Skip to main content

Brain-Computer Interfaces for Educational Applications

  • Chapter
  • First Online:
Informational Environments

Abstract

In this chapter, we present recent developments to utilize Brain-Computer Interface (BCI) technology in an educational context. As the current workload of a learner is a crucial factor for successful learning and should be held in an optimal range, we aimed at identifying the user’s workload by recording neural signals with electroencephalography (EEG). We describe initial studies that identified potential confounds when utilizing BCIs in such a scenario. Taking into account these results, we could show in a follow-up study that EEG could successfully be used to predict workload in students solving arithmetic exercises with increasing difficulty. Based on the obtained prediction model, we developed a digital learning environment that detects the user’s workload by EEG and automatically adapts the difficulty of the presented exercises to hold the learner’s workload level in an optimal range. Beside estimating workload based on EEG recordings, we also show that different executive functions can be detected and discriminated between based on their neural signatures. These findings could be used for a more specific adaptation of complex learning environments. Based on the existing literature and the results presented in this chapter, we discuss the methodological and theoretical prospects and pitfalls of this approach and outline further possible applications of BCI technology in an educational context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Askew, M. (2015). Numeracy for the 21st century: A commentary. ZDM: The International Journal on Mathematics Education, 47(4), 707–712.

    Google Scholar 

  • Berka, C., Levendowski, D. J., Lumicao, M. N., Yau, A., Davis, G., Zivkovic, V. T.,…, Craven, P. L. (2007). EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviation, Space and Environmental Medicine, 78(Supplement 1), B231–B244.

    Google Scholar 

  • Brouwer, A.-M., Hogervorst, M. A., Van Erp, J. B., Heffelaar, T., Zimmerman, P. H., & Oostenveld, R. (2012). Estimating workload using EEG spectral power and ERPs in the n-back task. Journal of Neural Engineering, 9(4), 045008.

    Google Scholar 

  • Burg, J. P. (1972). The relationship between maximum entropy spectra and maximum likelihood spectra. Geophysics, 37(2), 375–376.

    Google Scholar 

  • Calder, N. (2015). Student wonderings: Scaffolding student understanding within student-centred inquiry learning. ZDM: The International Journal on Mathematics Education, 47(7), 1121–1131.

    Google Scholar 

  • Causse, M., Fabre, E., Giraudet, L., Gonzalez, M., & Peysakhovich, V. (2015). EEG/ERP as a measure of mental workload in a simple piloting task. Procedia Manufacturing, 3, 5230–5236.

    Google Scholar 

  • Corbett, A. (2001). Cognitive computer tutors: Solving the two-sigma problem. In Proceedings of the 8th International Conference on User Modeling (pp. 137–147).

    Google Scholar 

  • Cover, T., & Thomas, J. (2006). Elements of information theory. Hoboken, NJ: Wiley-Interscience.

    Google Scholar 

  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135.

    Google Scholar 

  • Dowker, A. (2004). What works for children with mathematical difficulties? (Vol. 554). Nottingham: DfES Publications.

    Google Scholar 

  • Ecker, U. K., Lewandowsky, S., Oberauer, K., & Chee, A. E. (2010). The components of working memory updating: An experimental decomposition and individual differences. Journal of Experimental Psychology: Learning Memory and Cognition, 36(1), 170.

    Google Scholar 

  • Eriksen, C. W. (1995). The flankers task and response competition: A useful tool for investigating a variety of cognitive problems. Visual Cognition, 2(2–3), 101–118.

    Google Scholar 

  • Gerjets, P. H., & Hesse, F. W. (2004). When are powerful learning environments effective? the role of learner activities and of students conceptions of educational technology. International Journal of Educational Research, 41(6), 445–465.

    Google Scholar 

  • Gerjets, P., Scheiter, K., & Cierniak, G. (2009). The scientific value of cognitive load theory: A research agenda based on the structuralist view of theories. Educational Psychology Review, 21(1), 43–54.

    Google Scholar 

  • Gerjets, P., Walter, C., Rosenstiel, W., Bogdan, M., & Zander, T. O. (2014). Cognitive state monitoring and the design of adaptive instruction in digital environments: Lessons learned from cognitive workload assessment using a passive brain-computer interface approach. Frontiers in Neuroscience, 8, 385.

    Google Scholar 

  • Gevins, A., Smith, M., McEvoy, L., & Yu, D. (1997, Jun). High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty type of processing, and practice. Cereb Cortex, 7(4), 374–385.

    Google Scholar 

  • Graesser, A., & McNamara, D. (2010). Self-regulated Learning in Learning Environments with Pedagogical Agents that Interact in Natural Language. Educational Psychologist, 45, 234–244.

    Google Scholar 

  • Harmony, T., Ferna’ndez, T., Silva, J., Bosch, J., Valde’s, P., Ferna’ndez-Bouzas, A.,…, Rodríguez, D. (1999). Do specific eeg frequencies indicate different processes during mental calculation? Neuroscience Letters, 266(1), 25–28.

    Google Scholar 

  • Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., Bießmann, F. (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage, 87, 96–110.

    Google Scholar 

  • Jasper, H. (1958). The 10/20 international electrode system. EEG and Clinical Neurophysiology, 10, 371–375.

    Google Scholar 

  • Jonides, J., Schumacher, E. H., Smith, E. E., Lauber E. J., Awh, E., Minoshima, S., Koeppe, R.A. (1997). Verbal working memory load affects regional brain activation as measured by pet. Journal of Cognitive Neuroscience, 9(4), 462–475.

    Google Scholar 

  • Karagiannakis, G. N., & Cooreman, A. (2014). Focused MLD intervention based on the classification of MLD subtypes. In The Routledge International Handbook of Dyscalculia and Mathematical Learning Difficulties (p. 265).

    Google Scholar 

  • Käser, T., Baschera, G.-M., Busetto, A. G., Klingler, S., Solenthaler, B., Buhmann, J. M., Gross, M. (2013). Towards a framework for modelling engagement dynamics in multiple learning domains. International Journal of Artificial Intelligence in Education, 22(1–2), 59–83.

    Google Scholar 

  • Kirschner, P., & Gerjets, P. (2006). Instructional design for effective and enjoyable computer-supported learning. Computers in Human Behavior, 22(1), 1–8.

    Google Scholar 

  • Kohlmorgen, J., Dornhege, G., Braun, M., Blankertz, B., Müller K.-R., Curio, G.,…, Kincses, W. E. (2007). Improving human performance in a real operating environment through real-time mental workload detection. In Toward Brain-Computer Interfacing (pp. 409–422). Cambridge, MA: MIT Press.

    Google Scholar 

  • Kong, J., Wang, C., Kwong, K., Vangel, M., Chua, E., & Gollub, R. (2005). The neural substrate of arithmetic operations and procedure complexity. Cognitive Brain Research, 22(3), 397–405.

    Article  PubMed  Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex frontal lobe tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100.

    Article  PubMed  Google Scholar 

  • Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140.

    Article  PubMed  Google Scholar 

  • Murata, A. (2005). An attempt to evaluate mental workload using wavelet transform of EEG. Human Factors: The Journal of the Human Factors and Ergonomics Society, 47(3), 498–508.

    Article  Google Scholar 

  • Oken, B., Salinsky M., & Elsas, S. (2006). Vigilance, alertness, or sustained attention: Physiological basis and measurement. Clinical Neurophysiology, 117(9), 1885–1901.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards, K. C., Enderlin, C. A., Beck, C., McSweeney J. C., Jones, T. C., & Rober son, P. K. (2007). Tailored biobehavioral interventions: A literature review and synthesis. Research and Theory for Nursing Practice, 21(4), 271–285.

    Google Scholar 

  • Samek, W., Meinecke, F. C., & Müller, K.-R. (2013). Transferring subspaces between subjects in brain-computer interfacing. IEEE Transactions on Biomedical Engineering, 60(8), 2289–2298.

    Article  PubMed  Google Scholar 

  • Sanders, A., & Lamers, J. (2002). The Eriksen flanker effect revisited. Acta Psychologica, 109(1), 41–56.

    Article  PubMed  Google Scholar 

  • Scharinger, C., Kammerer, Y., & Gerjets, P. (2015a). Pupil dilation and eeg alpha frequency band power reveal load on executive functions for link-selection processes during text reading. PloS One, 10(6), e0130608.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scharinger, C., Soutschek, A., Schubert, T., & Gerjets, P. (2015b). When flanker meets the n-back: What EEG and pupil dilation data reveal about the interplay between the two central-executive working memory functions inhibition and updating. Psychophysiology, 52(10), 1293–1304.

    Article  PubMed  Google Scholar 

  • Scheiter, K., Fillisch, B., Krebs, M.-C., Leber, J., Ploetzner, R., Renkl, A., et al. (2017). How to design adaptive multimedia environments to support self-regulated learning. In Informational Environments: Effects of Use Effective Designs (Chap. 9).

    Google Scholar 

  • Schlögl, A., Keinrath, C., Zimmermann, D., Scherer R., Leeb, R., & Pfurtscheller, G. (2007). A fully automated correction method of EOG artifacts in EEG recordings. Clinical Neurophysiology, 118(1), 98–104.

    Article  PubMed  Google Scholar 

  • Soltanlou, M., Jung, S., Roesch, S., Ninaus, M., Brandelik, K., Heller, J., et al. (2017). Behavioral and neurocognitive evaluation of a web-based learning platform for orthography and arithmetic. In Informational Environments: Effects of Use Effective Designs (Chap. 7).

    Google Scholar 

  • Spüler, M. (2015). A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 4087–1090).

    Google Scholar 

  • Spüler, M., Rosenstiel, W., & Bogdan, M. (2012a). Adaptive SVM-based classification increases performance of a MEG-based Brain-Computer Interface (BCI). In International Conference on Artificial Neural Networks (pp. 669–676).

    Google Scholar 

  • Spüler, M., Rosenstiel, W., & Bogdan, M. (2012b). Principal component based covariate shift adaption to reduce non-stationarity in a MEG-based brain- computer interface. EURASIP Journal on Advances in Signal Processing, 2012(1), 1–7.

    Article  Google Scholar 

  • Spüler, M., Walter, A., Rosenstiel, W., & Bogdan, M. (2014). Spatial filtering based on canonical correlation analysis for classification of evoked or event- related potentials in EEG data. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(6), 1097–1103.

    Article  PubMed  Google Scholar 

  • Spüler, M., Sarasola-Sanz, A., Birbaumer, N., Rosenstiel, W., & Ramos-Murguialday, A. (2015). Comparing metrics to evaluate performance of regression methods for decoding of neural signals. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1083–1086).

    Google Scholar 

  • Spüler, M., Walter, C., Rosenstiel, W., Gerjets, P., Moeller K., & Klein, E. (2016). EEG-based prediction of cognitive workload induced by arithmetic: A step towards online adaptation in numerical learning. ZDM: The International Journal on Mathematics Education ZDM, 48(3), 267–278.

    Article  Google Scholar 

  • Stanescu-Cosson, R., Pinel, P., van de Moortele, P.-F., Le Bihan, D., Cohen, L., & Dehaene, S. (2000). Understanding dissociations in dyscalculia. Brain, 123(11), 2240–2255.

    Article  PubMed  Google Scholar 

  • Sweller, J., Van Merrinboer, J. J. G., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296.

    Article  Google Scholar 

  • Thomas, H. B. G. (1963). Communication theory and the constellation hypothesis of calculation. Quarterly Journal of Experimental Psychology, 15(3), 173–191.

    Article  Google Scholar 

  • Tu, W., & Sun, S. (2012). A subject transfer framework for eeg classification. Neurocomputing, 82, 109–116.

    Article  Google Scholar 

  • Walter, C., Cierniak, G., Gerjets, P., Rosenstiel, W., & Bogdan, M. (2011). Classifying mental states with machine learning algorithms using alpha activity decline. In European Symposium on Artificial Neural Networks

    Google Scholar 

  • Walter, C., Schmidt, S., Rosenstiel, W., Gerjets, P., & Bogdan, M. (2013). Using cross-task classification for classifying workload levels in complex learning tasks. In Affective Computing and Intelligent Interaction (ACII), 2013 (pp. 876–881).

    Google Scholar 

  • Walter, C., Wolter, P., Rosenstiel, W., Bogdan, M., & Spüler, M. (2014, 09). Towards cross-subject workload prediction. In Proceedings of the 6th International Brain-Computer Interface Conference, Graz, Austria.

    Google Scholar 

  • Wang, Z., Hope, R. M., Wang, Z., Ji, Q., & Gray, W. D. (2012). Cross-subject workload classification with a hierarchical bayes model. NeuroImage, 59(1), 64–69.

    Article  PubMed  Google Scholar 

  • Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financed by the Leibniz ScienceCampus Tübingen “Informational Environments”. It was further supported by the Deutsche Forschungsgemeinschaft (DFG; grant SP-1533∖2-1) and the LEAD Graduate school at the Eberhard-Karls University Tübingen, which is funded by the Excellence Initiative of the German federal government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Spüler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Spüler, M., Krumpe, T., Walter, C., Scharinger, C., Rosenstiel, W., Gerjets, P. (2017). Brain-Computer Interfaces for Educational Applications. In: Buder, J., Hesse, F. (eds) Informational Environments . Springer, Cham. https://doi.org/10.1007/978-3-319-64274-1_8

Download citation

Publish with us

Policies and ethics