Skip to main content

Effects of Reaction Knockouts on Steady States of Metabolism

  • Chapter
  • First Online:
A Network-Based Approach to Cell Metabolism

Part of the book series: Springer Theses ((Springer Theses))

  • 394 Accesses

Abstract

The activity and essentiality of metabolic reactions of two model organisms, Escherichia coli and Mycoplasma pneumoniae, are studied using flux balance analysis in different environments. In particular, synthetic lethal pairs correspond to combinations of active and active or inactive non-essential reactions whose simultaneous deletion causes cell death. Lethal knockouts of pairs of reactions separate in two different groups depending on whether the pair of reactions works as a backup or as a parallel use mechanism, the first corresponding to essential plasticity and the second to essential redundancy. Within this perspective, functional plasticity and redundancy are essential mechanisms underlying the ability to survive of metabolic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabási AL (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427(6977):839–843

    Article  CAS  Google Scholar 

  2. Almaas E, Oltvai ZN, Barabási AL (2005) The activity reaction core and plasticity of metabolic networks. PLoS Comput Biol 1:0557–0563

    Article  CAS  Google Scholar 

  3. Baba T et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(1)

    Google Scholar 

  4. Joyce AR et al (2006) Experimental and computational assessment of conditionally essential genes in Escherichia coli. J Bacteriol 188(23):8259–8271

    Article  CAS  Google Scholar 

  5. Barve A, Rodrigues JFM, Wagner A (2012) Superessential reactions in metabolic networks. Proc Natl Acad Sci USA 1091:E1121–E1130

    Article  Google Scholar 

  6. Suthers PF, Zomorrodi A, Maranas CD (2009) Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol Syst Biol 5:301

    Article  Google Scholar 

  7. Wang Z, Zhang J (2009) Abundant indispensable redundancies in cellular metabolic networks. Genome Biol Evol 1:23–33

    Article  Google Scholar 

  8. Nygaard P, Smith JM (1993a) Evidence for a novel glycinamide ribonucleotide transformylase in Escherichia coli. J Bacteriol 175:3591–3597

    Article  CAS  Google Scholar 

  9. Hartman JL, Garvik B, Hartwell L (2001) Principles for the buffering of genetic variation. Science 291:1001–1004

    Article  CAS  Google Scholar 

  10. Tucker CL, Fields S (2003) Lethal combinations. Nat Genet 35:204–205

    Article  CAS  Google Scholar 

  11. Masel J, Siegal ML (2009) Robustness: mechanisms and consequences. Trends Genet 25:395–403

    Article  CAS  Google Scholar 

  12. Nijman SMB (2011) Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett 585:1–6

    Article  CAS  Google Scholar 

  13. Kaelin WG (2005) The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5:689–698

    Article  CAS  Google Scholar 

  14. Harrison R, Papp B, Pál C, Oliver SG, Delneri D (2007) Plasticity of genetic interactions in metabolic networks of yeast. Proc Natl Acad Sci USA 104:2307–2312

    Article  CAS  Google Scholar 

  15. Wagner A (2005) Distributed robustness versus redundancy as causes of mutational robustness. BioEssays 27:176–188

    Article  CAS  Google Scholar 

  16. Kelley R, Ideker T (2005) Systematic interpretation of genetic interactions using protein networks. Nat Biotechnol 23:561–566

    Article  CAS  Google Scholar 

  17. Güell O, Serrano MÁ, Sagués F (2014) Environmental dependence of the activity and essentiality of reactions in the metabolism of Escherichia coli. In Engineering of Chemical Complexity II. World Scientific Publishing, Singapore ISBN 978-981-4616-12-6

    Google Scholar 

  18. Güell O, Sagués F, Serrano MÁ (2014) Essential plasticity and redundancy of metabolism unveiled by synthetic lethality analysis. PLoS Comput Biol 10(5):e1003637

    Google Scholar 

  19. Novick P, Osmond BC, Botstein D (1989) Suppressors of yeast actin mutations. Genetics 121:659–674

    CAS  Google Scholar 

  20. Zhao G, Winkler ME (1995) An Escherichia coli K-12 tktA tktB mutant deficient in transketolase activity requires pyridoxine (vitamin B\(_6\)) as well as the aromatic amino acids and vitamins for growth. J Bacteriol 176:883–891

    Article  Google Scholar 

  21. Deutscher D, Meilijson I, Kupiec M, Ruppin E (2006) Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet 38:993–998

    Article  CAS  Google Scholar 

  22. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264–276

    Article  CAS  Google Scholar 

  23. Gudmundsson S, Thiele I (2010) Computationally efficient flux variability analysis. BMC Bioinform 11:489

    Article  Google Scholar 

  24. Orth JD et al (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism - 2011. Mol Syst Biol 7:535

    Article  Google Scholar 

  25. Glass JI et al (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 103:425–430

    Article  CAS  Google Scholar 

  26. Wodke JAH et al (2013) Dissecting the energy metabolism in Mycoplasma pneumoniae through genome-scale metabolic modeling. Mol Syst Biol 9:653

    Article  Google Scholar 

  27. Yus E et al (2009) Impact of genome reduction on bacterial metabolism and its regulation. Science 326:1263–1268

    Article  CAS  Google Scholar 

  28. Whalen WA, Berg CM (1982) Analysis of avtA: Mu d1(ap lac) mutant: metabolic role of transaminase C. J Bacteriol 150:739–746

    CAS  Google Scholar 

  29. Nygaard P, Smith JM (1993b) Evidence for a novel glycinamide ribonucleotide transformylase in Escherichia coli. J Bacteriol 175:3591–3597

    Article  CAS  Google Scholar 

  30. Troup B, Hungerer C, Jahn D (1995) Cloning and characterization of the Escherichia coli hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase. J Bacteriol 177:3326–3331

    Article  CAS  Google Scholar 

  31. Rompf A et al (1998) Regulation of Pseudomonas aeruginosa hemF and hemN by the dual action of the redox response regulators Anr and Dnr. Mol Microbiol 29:985–997

    Article  CAS  Google Scholar 

  32. Jiao Z, Baba T, Mori H, Shimizu K (2003) Analysis of metabolic and physiological responses to gnd knockout in Escherichia coli by using C-13 tracer experiment and enzyme activity measurement. FEMS Microbiol Lett 220:295–301

    Article  CAS  Google Scholar 

  33. Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12:274–281

    Article  CAS  Google Scholar 

  34. Serrano MÁ, Boguñá M, Sagués F (2012) Uncovering the hidden geometry behind metabolic networks. Mol BioSyst 8:843–850

    Article  CAS  Google Scholar 

  35. Giaever G et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  Google Scholar 

  36. Steinmetz LM et al (2002) Systematic screen for human disease genes in yeast. Nat Genet 31:400–404

    CAS  Google Scholar 

  37. Nakahigashi K et al (2009) Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism. Mol Syst Biol 5:306

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriol Güell .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Güell, O. (2017). Effects of Reaction Knockouts on Steady States of Metabolism. In: A Network-Based Approach to Cell Metabolism. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-64000-6_4

Download citation

Publish with us

Policies and ethics