Skip to main content

Methods and Data

  • Chapter
  • First Online:
A Network-Based Approach to Cell Metabolism

Part of the book series: Springer Theses ((Springer Theses))

  • 414 Accesses

Abstract

This chapter describes the basics of the fundamental techniques used in this thesis. It is divided in three parts: (1) complex network tools applied to metabolism, (2) description of Flux Balance Analysis (FBA)—used to compute metabolic fluxes at steady state—and of Flux Variability Analysis—a variant of FBA to bound minimum and maximum fluxes for each reaction—and (3) a description of all the genome-scale metabolic reconstructions analysed in this thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Protein–protein interactions refer to physical contacts established between two or more proteins as a result of biochemical events and/or electrostatic forces.

  2. 2.

    This name is refers to the scale-invariance that power-laws display: if \(f(x)=a(x)^\gamma \), then \(f(cx)=a(cx)^\gamma =c^\gamma \,f(x)\).

  3. 3.

    According to the IUPAC, a moiety is a part of a molecule that may include either whole functional groups or parts of functional groups as substructures.

References

  1. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Article  Google Scholar 

  2. Newman M (2010) Networks: an introduction. Oxford University Press, New York

    Book  Google Scholar 

  3. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Article  CAS  Google Scholar 

  4. Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42

    Article  CAS  Google Scholar 

  5. Wagner A, Fell DA (2001) The small world inside large metabolic networks. Proc R Soc Lond B 268:1803–1810

    Article  CAS  Google Scholar 

  6. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555

    Article  CAS  Google Scholar 

  7. Barabási AL, Oltvai ZN (2004) Network biology: understanding the cells functional organization. Nat Rev Genet 5:101–113

    Article  Google Scholar 

  8. Wagner A (2005) Distributed robustness versus redundancy as causes of mutational robustness. BioEssays 27:176–188

    Article  CAS  Google Scholar 

  9. Motter AE, Gulbahce N, Almaas E, Barabási AL (2008) Predicting synthetic rescues in metabolic networks. Mol Syst Biol 4:168

    Article  Google Scholar 

  10. Palsson BØ (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, New York

    Book  Google Scholar 

  11. Alon U (2006) An introduction to systems biology: design principles of biological circuits. CRC Press, Boca Raton

    Google Scholar 

  12. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    Article  CAS  Google Scholar 

  13. Varma A, Palsson BØ (1993) Metabolic capabilities of Escherichia coli: I. Synthesis of biosynthetic precursors and cofactors. J Theor Biol 165(4):477–502

    Article  CAS  Google Scholar 

  14. Suthers PF, Zomorrodi A, Maranas CD (2009) Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol Syst Biol 5:301

    Article  Google Scholar 

  15. Barve A, Rodrigues JFM, Wagner A (2012) Superessential reactions in metabolic networks. Proc Natl Acad Sci USA 1091:E1121–E1130

    Article  Google Scholar 

  16. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264–276

    Article  CAS  Google Scholar 

  17. Gudmundsson S, Thiele I (2010) Computationally efficient flux variability analysis. BMC Bioinform 11:489

    Article  Google Scholar 

  18. Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabási AL (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427(6977):839–843

    Article  CAS  Google Scholar 

  19. Guillaume JL, Latapy M (2006) Bipartite graphs as models of complex networks. Phyics A 371:795–813

    Google Scholar 

  20. Güell O, Serrano MÁ, Sagués F (2014) Environmental dependence of the activity and essentiality of reactions in the metabolism of Escherichia coli. In: Engineering of Chemical Complexity II. World Scientific Publishing, Singapore, pp 39–56. ISBN 978-981-4616-12-6

    Google Scholar 

  21. Holme P, Liljeros F, Edling CR, Kim BJ (2003) Network bipartivity. Phys Rev E 68(5):056107

    Article  Google Scholar 

  22. Ma HW, Zeng AP (2003a) Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 19:270–277

    Article  CAS  Google Scholar 

  23. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    Article  Google Scholar 

  24. Barabási AL, Bonabeau E (2003) Scale-free networks. Sci Am 288(5):50–59

    Article  Google Scholar 

  25. Albert R (2005) Scale-free networks in cell biology. J Cell Sci 118(21):4947–4957

    Article  CAS  Google Scholar 

  26. Keller EF (2005) Revisiting “scale-free” networks. BioEssays 27(10):1060–1068

    Article  Google Scholar 

  27. Tanaka R (2005) Scale-rich metabolic networks. Phys Rev Lett 94(16):168101

    Article  Google Scholar 

  28. Kim P et al (2007) Metabolite essentiality elucidates robustness of Escherichia coli metabolism. Proc Natl Acad Sci USA 104(34):13638–13642

    Article  CAS  Google Scholar 

  29. Feist AM et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Article  Google Scholar 

  30. Orth JD, Fleming RM, Palsson BØ (2009) EcoSal—Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DC

    Google Scholar 

  31. Orth JD et al (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol Syst Biol 7:535

    Article  Google Scholar 

  32. Yus E et al (2009) Impact of genome reduction on bacterial metabolism and its regulation. Science 326:1263–1268

    Article  CAS  Google Scholar 

  33. Wodke JAH et al (2013) Dissecting the energy metabolism in Mycoplasma pneumoniae through genome-scale metabolic modeling. Mol Syst Biol 9:653

    Article  Google Scholar 

  34. Becker SA, Palsson BØ (2005) Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol 5:8

    Article  Google Scholar 

  35. Güell O, Sagués F, Serrano MÁ (2012) Predicting effects of structural stress in a genome-reduced model bacterial metabolism. Sci Rep 2:621

    Google Scholar 

  36. Ma HW, Zeng AP (2005) Reconstruction of metabolic networks from genome information and its structural. Computational systems biology. Academic Press, New York

    Google Scholar 

  37. Kriete A, Eils R (2005) Computational systems biology. Academic Press, New York

    Google Scholar 

  38. Arita M (2004) The metabolic world of Escherichia coli is not small. Proc Natl Acad Sci USA 101(6):1543–1547

    Article  CAS  Google Scholar 

  39. Gao JT, Guimerà R, Li H, Pinto IM, Sales-Pardo M, Wai SC, Rubinstein B, Li R (2011) Modular coherence of protein dynamics in yeast cell polarity system. Proc Natl Acad Sci USA 108(18):7647–7652

    Article  CAS  Google Scholar 

  40. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3):75–174

    Article  Google Scholar 

  41. Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci USA 105:1118–1123

    Article  CAS  Google Scholar 

  42. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026113

    Article  CAS  Google Scholar 

  43. Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E 74(1):016110

    Article  Google Scholar 

  44. Blondel VD, Guillaume J, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech 10:P10008

    Article  Google Scholar 

  45. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Springer, New York

    Book  Google Scholar 

  46. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications. Prentice Hall, Englewood Cliffs

    Google Scholar 

  47. Ma HW, Zeng AP (2003b) The connectivity stucture, giant strong component and centrality of metabolic networks. Bioinformatics 19:1423–1430

    Article  CAS  Google Scholar 

  48. Boguñá M, Ángeles M (2005) Generalized percolation in random directed networks. Phys Rev E 72:016106

    Article  Google Scholar 

  49. Serrano MÁ, De Los P (2008) Structural efficiency of percolated landscapes in flow networks. PLoS ONE 3:e3654

    Article  Google Scholar 

  50. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  CAS  Google Scholar 

  51. Erdös P, Rényi A (1959) On random graphs I. Publ Math Debr 6:290–297

    Google Scholar 

  52. Erdös P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61

    Google Scholar 

  53. Molloy M, Reed B (1995) A critical point for random graphs with a given degree sequence. Random Struct Algorithm 6:161–179

    Article  Google Scholar 

  54. Newman MEJ, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E 64:026118

    Article  CAS  Google Scholar 

  55. Milo R et al (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827

    Article  CAS  Google Scholar 

  56. Smart AG, Amaral LAN, Ottino J (2008) Cascading failure and robustness in metabolic networks. Proc Natl Acad Sci USA 105:13223–13228

    Article  CAS  Google Scholar 

  57. Güell O, Sagués F, Basler G, Nikoloski Z, Serrano MÁ (2012) Assessing the significance of knockout cascades in metabolic networks. J Comp Int Sci 3(1–2):45–53

    Google Scholar 

  58. Basler G, Ebenhöh O, Selbig J, Nikoloski Z (2011) Mass-balanced randomization of metabolic networks. Bioinformatics 27:1397–1403

    Article  CAS  Google Scholar 

  59. Basler G, Grimbs S, Ebenhöh O, Selbig J, Nikoloski Z (2012) Evolutionary significance of metabolic network properties. J R Soc Interface 9:1168–1176

    Article  CAS  Google Scholar 

  60. Costa RS, Machado D, Rocha I, Ferreira EC (2011) Critical perspective on the consequences of the limited availability of kinetic data in metabolic dynamic modelling. IET Syst Biol 5(3):157–163

    Article  CAS  Google Scholar 

  61. Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17(2):53–60

    Article  CAS  Google Scholar 

  62. Price N, Reed J, Papin J, Wiback S, Palsson BØ (2003) Network-based analysis of metabolic regulation in the human red blood cell. J Theor Biol 225(2):185–194

    Article  CAS  Google Scholar 

  63. Oberhardt MA, Palsson BØ, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5(1):320

    Google Scholar 

  64. Terzer M, Maynard ND, Covert MW, Stelling J (2009) Genome-scale metabolic networks. Wiley Interdiscip. Rev. Syst. Biol. Med. 1(3):285–297

    Article  CAS  Google Scholar 

  65. McCloskey D, Palsson BØ, Feist AM (2013) Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol Syst Biol 9(1):661

    Article  CAS  Google Scholar 

  66. Schilling CH, Palsson BØ (1998) The underlying pathway structure of biochemical reaction networks. Proc Natl Acad Sci USA 95:4193–4198

    Article  CAS  Google Scholar 

  67. Schilling CH, Edwards JS, Letscher D, Palsson BØ (2000) Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol Bioeng 71:286–306

    Article  CAS  Google Scholar 

  68. Makhorin A (2001) GNU linear programming kit. Moscow Aviation Institute, Moscow

    Google Scholar 

  69. Ceron R (2006) The GNU linear programming kit, Part 1: introduction to linear optimization. IBM, Raleigh

    Google Scholar 

  70. Ceron R (2006b) The GNU linear programming kit, Part 2: intermediate problems in linear programming. IBM, Raleigh

    Google Scholar 

  71. Ceron R (2006c) The GNU linear programming kit, Part 3: advanced problems and elegant solutions. IBM, Raleigh

    Google Scholar 

  72. Murty KG (1983) Linear programming, vol 57. Wiley, New York

    Google Scholar 

  73. Sezonov G, Joseleau-Petit D, D’Ari R (2007) Escherichia coli physiology in Luria-Bertani broth. J Bacteriol 189:8746–8749

    Article  CAS  Google Scholar 

  74. Wunderlich Z, Mirny LA (2006) Using the topology of metabolic networks to predict viability of mutant straints. Biophys J 91:2304–2311

    Article  CAS  Google Scholar 

  75. Müller AC, Bockmayr A (2013) Fast thermodynamically constrained flux variability analysis. Bioinformatics 29:903–909

    Article  Google Scholar 

  76. Reed JL, Palsson BØ (2004) Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res 14(9):1797–1805

    Article  CAS  Google Scholar 

  77. Güell O, Sagués F, Serrano MÁ (2014) Essential plasticity and redundancy of metabolism unveiled by synthetic lethality analysis. PLoS Comput Biol 10(5):e1003637

    Google Scholar 

  78. Duarte NC, Herrgard MJ, Palsson BØ (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14:1298–1309

    Article  CAS  Google Scholar 

  79. Feist AM, Scholten JCM, Palsson BØ, Brockman FJ, Ideker T (2004) Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol Syst Biol 2:2006

    Google Scholar 

  80. Duarte NC, Becker SS, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA 104(6):1777–1782

    Article  CAS  Google Scholar 

  81. Jamshidi N, Palsson BØ (2007) Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol 1:26

    Article  Google Scholar 

  82. Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson BØ (2008) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7(2):129–143

    Article  Google Scholar 

  83. Senger RS, Papoutsakis ET (2008) Genome-scale model for Clostridium acetobutylicum: part I. Metabolic network resolution and analysis. Biotechnol Bioeng 101(5):1036–1052

    Article  CAS  Google Scholar 

  84. Raghunathan A, Reed J, Shin S, Palsson BØ, Daefler S (2009) Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction. BMC Syst Biol 3(1):38

    Article  Google Scholar 

  85. Thiele I et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31(5):419–425

    Article  CAS  Google Scholar 

  86. Schellenberger J, Park JO, Conrad TC, Palsson BØ (2010) BiGG: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinform 11:213

    Article  Google Scholar 

  87. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  Google Scholar 

  88. Caspi R et al (2012) The metacyc database of metabolic pathways and enzymes and the biocyc collection of pathway/genome databases. Nucleic Acids Res 40(D1):D742–D753

    Article  CAS  Google Scholar 

  89. Schomburg I et al (2012) BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res 41:D764–D772

    Article  Google Scholar 

  90. Edwards JS, Ibarra RU, Palsson BØ (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci USA 97:5528–5533

    Article  CAS  Google Scholar 

  91. Reed JL, Vo TD, Schilling CH, Palsson BØ (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4(9):R54

    Article  Google Scholar 

  92. Riley M et al (2006) Escherichia coli K-12: a cooperatively developed annotation snapshot-2005. Nucleic Acids Res 34(1):1–9

    Article  CAS  Google Scholar 

  93. Keseler IM et al (2005) EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33(suppl 1):D334–D337

    CAS  Google Scholar 

  94. Keseler IM et al (2009) EcoCyc: a comprehensive view of Escherichia coli biology. Nucleic Acids Res 37(suppl 1):D464–D470

    Article  CAS  Google Scholar 

  95. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38(suppl 1):D355–D360

    Article  CAS  Google Scholar 

  96. Kühner S et al (2009) Proteome organization in a genome-reduced bacterium. Science 326:1235–1240

    Article  Google Scholar 

  97. Güell M et al (2009) Transcriptome complexity in a genome-reduced bacterium. Science 326:1268–1271

    Article  Google Scholar 

  98. Kuroda M et al (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357(9264):1225–1240

    Article  CAS  Google Scholar 

  99. Peterson JD, Umayam LA, Dickinson T, Hickey EK, White O (2001) The comprehensive microbial resource. Nucleic Acids Res 29(1):123–125

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriol Güell .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Güell, O. (2017). Methods and Data. In: A Network-Based Approach to Cell Metabolism. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-64000-6_2

Download citation

Publish with us

Policies and ethics