Skip to main content

Swarm Intelligence Applied to Big Data Analytics for Rescue Operations with RASEN Sensor Networks

  • Conference paper
  • First Online:
Big Data and Visual Analytics

Abstract

Various search methods combined with frontier technology have been utilized to save lives in rescue situations throughout history. Today, new networked technology, cyber-physical system platforms, and algorithms exist which can coordinate rescue operations utilizing swarm intelligence with Rapid Alert Sensor for Enhanced Night Vision (RASEN). We will also introduce biologically inspired algorithms combined with proposed fusion night vision technology that can rapidly converge on a near optimal path between survivors and identify signs of life trapped in rubble. Wireless networking and automated suggested path data analysis is provided to rescue teams utilizing drones as first responders based on the results of swarm intelligence algorithms coordinating drone formations and triage after regional disasters requiring Big Data analytic visualization in real-time. This automated multiple-drone scout approach with dynamic programming ability enables appropriate relief supplies to be deployed intelligently by networked convoys to survivors continuously throughout the night, within critical constraints calculated in advance, such as projected time, cost, and reliability per mission. Rescue operations can scale according to complexity of Big Data characterization based on data volume, velocity, variety, variability, veracity, visualization, and value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. VOA: Natural disasters cause $175 billion in damages. http://www.voanews.com/a/years-natural-disasters-cause-billions-of-dollars-in-damages/3663333.html (2016). [Online]; Accessed 21 May 2016

  2. Owens, D.A., Sivak, M.: Differentiation of visibility and alcohol as contributors to twilight road fatalities. Hum. Factors. 38(4), 680–689 (1996)

    Article  Google Scholar 

  3. Federal Highway Administration: Driving after dark. https://www.fhwa.dot.gov/publications/publicroads/03jan/05.cfm (2016). [Online]; Accessed 10 Mar 2016

  4. Nathaniel F.: EO soldiers new integrated rifle/helmet night vision system. http://www.thefirearmblog.com/blog/2015/07/28/peo-soldiers-new-integrated-riflehelmet-night-vision-system/ (2016). [Online]; Accessed 29 July 2016

  5. FLIR: Signal detection & ITS video. http://www.flir.com/security/display/?id=44284 (2016). [Online]; Accessed 15 May 2016

  6. WIKI: Automotive night vision. https://en.wikipedia.org/wiki/Automotive_night_vision (2016). [Online]; Accessed 17 Dec 2016

  7. ROBOHUB: Swarms of precision agriculture robots could help put food on the table. http://robohub.org/swarms-of-precision-agriculture-robots-could-help-put-food-on-the-table/ (2016). [Online]; Accessed 21 Oct 2016

  8. Interesting Engineering: Swedens futuristic fire-fighting helmet. http://interestingengineering.com/swedens-futuristic-fire-fighting-helmet/ (2016). [Online]; Accessed 15 Mar 2016

  9. Security Systems Technology: Thermal imaging technology for surveillance and security. http://www.securitysystems-tech.com/files/securitysystems/supplier_docs/ULIS-Surveillance%20and%20Security.pdf (2016). [Online]; Accessed 18 June 2016

  10. Waharte, S., Trigoni, N.: Supporting search and rescue operations with UAVs. In: 2010 International Conference on Emerging Security Technologies (EST), pp. 142–147. IEEE (2010)

    Google Scholar 

  11. Asadpour, M., Giustiniano, D., Anna Hummel, K., Egli, S.: UAV networks in rescue missions. In: Proceedings of the 8th ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization, pp. 91–92. ACM (2013)

    Google Scholar 

  12. Hsu, H.J., Chen, K.T.: Face recognition on drones: issues and limitations. In: Proceedings of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, pp. 39–44. ACM (2015)

    Google Scholar 

  13. Wallace, L., Lucieer, A., Watson, C., Turner, D.: Development of a UAV-LiDAR system with application to forest inventory. Remote Sens. 4(6), 1519–1543 (2012)

    Article  Google Scholar 

  14. Lin, L., Goodrich, M.A.: UAV intelligent path planning for wilderness search and rescue. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp. 709–714. IEEE (2009)

    Google Scholar 

  15. Almurib, H.A.F., Nathan, P.T., Kumar, T.N.: Control and path planning of quadrotor aerial vehicles for search and rescue. In: 2011 Proceedings of SICE Annual Conference (SICE), pp. 700–705. IEEE (2011)

    Google Scholar 

  16. Gade, R., Moeslund, T.B.: Thermal cameras and applications: a survey. Mach. Vis. Appl. 25(1), 245–262 (2014)

    Article  Google Scholar 

  17. Dong, N., Ren, X., Sun, M., Jiang, C., Zheng, H.: Fast stereo aerial image construction and measurement for emergency rescue. In: 2013 Fifth International Conference on Geo-Information Technologies for Natural Disaster Management (GiT4NDM), pp. 119–123. IEEE (2013)

    Google Scholar 

  18. Morse, B.S., Engh, C.H., Goodrich, M.A.: UAV video coverage quality maps and prioritized indexing for wilderness search and rescue. In: 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 227–234. IEEE (2010)

    Google Scholar 

  19. Natraj, A., Sturm, P., Demonceaux, C., Vasseur, P.: A geometrical approach for vision based attitude and altitude estimation for UAVs in dark environments. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4565–4570. IEEE (2012)

    Google Scholar 

  20. Burkle, A., Segor, F., Kollmann, M.: Towards autonomous micro UAV swarms. J. Intell. Robot. Syst. 61(1–4), 339–353 (2011)

    Article  Google Scholar 

  21. Gharibi, M., Boutaba, R., Waslander, S.L.: Internet of drones. IEEE Access. 4, 1148–1162 (2016)

    Article  Google Scholar 

  22. Kothari, M., Postlethwaite, I.: A probabilistically robust path planning algorithm for UAVs using rapidly-exploring random trees. J. Intell. Robot. Syst. 71(2), 231–253 (2013)

    Google Scholar 

  23. Sujit, P.B., Saripalli, S., Sousa, J.B.: Unmanned aerial vehicle path following: a survey and analysis of algorithms for fixed-wing unmanned aerial vehicles. IEEE Control Syst. 34(1), 42–59 (2014)

    Article  MathSciNet  Google Scholar 

  24. Wikipedia: General Atomics MQ-9 Reaper. https://en.wikipedia.org/wiki/ [Online]; Accessed 21 May 2016

  25. Daniel, K., Dusza, B., Lewandowski, A., Wietfeld, C.: Air-shield: a system-of-systems MUAV remote sensing architecture for disaster response. In: Systems Conference, 2009 3rd Annual IEEE, pp. 196–200. IEEE (2009)

    Google Scholar 

  26. Remy, G., Senouci, S.-M., Jan, F., Gourhant, Y.: SAR drones: drones for advanced search and rescue missions. Journées Nationales des Communications dans les Transports. 1, 1–3 (2013)

    Google Scholar 

  27. Hammerseth, V.B.: Autonomous unmanned aerial vehicle in search and rescue - a prestudy. https://daim.idi.ntnu.no/masteroppgaver/010/10095/masteroppgave.pdf/(2017). [Online]; Accessed 14 Oct 2017

  28. Liu, Z., Li, Z., Liu, B., Fu, X., Raptis, I., Ren, K.: Rise of mini-drones: applications and issues. In: Proceedings of the 2015 Workshop on Privacy-Aware Mobile Computing, pp. 7–12. ACM (2015)

    Google Scholar 

  29. PhantomPilots: Airnamics, what a big drone you have!! http://www.phantompilots.com/threads/airnamics-what-a-big-drone-you-have.64624/ (2017) [Online]; Accessed 1 Feb 2017

  30. Kim, G.H., Nam, J.C., Mahmud, I., Cho, Y.Z.: Multi-drone control and network self-recovery for flying ad hoc networks. In: 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 148–150. IEEE (2016)

    Google Scholar 

  31. Tanzi, T.J., Chandra, M., Isnard, J., Camara, D., Sebastien, O., Harivelo, F.: Towards “drone-borne” disaster management: future application scenarios. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. 3(8), 181–189 (2016)

    Google Scholar 

  32. Cimino, M.G.C.A., Celandroni, N., Ferro, E., La Rosa, D., Palumbo, F., Vaglini, G.: Wireless communication, identification and sensing technologies enabling integrated logistics: a study in the harbor environment. CoRR. abs/1510.06175(10). arXiv preprint (2015)

    Google Scholar 

  33. Rahman, M.A.: Enabling drone communications with wimax technology. In: The 5th International Conference on Information, Intelligence, Systems and Applications, IISA 2014, pp. 323–328. IEEE (2014)

    Google Scholar 

  34. Bekmezci, I., Sahingoz, O.K., Temel, S.: Flying ad-hoc networks (FANETs): a survey. Ad Hoc Netw. 11(3), 1254–1270 (2013)

    Article  Google Scholar 

  35. Asadpour, M., Van den Bergh, B., Giustiniano, D., Hummel, K., Pollin, S., Plattner, B.: Micro aerial vehicle networks: an experimental analysis of challenges and opportunities. IEEE Commun. Mag. 52(7), 141–149 (2014)

    Article  Google Scholar 

  36. Camara, D.: Cavalry to the rescue: drones fleet to help rescuers operations over disasters scenarios. In: 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), pp. 1–4. IEEE (2014)

    Google Scholar 

  37. Bengtsson, L., Lu, X., Thorson, A., Garfield, R., Von Schreeb, J.: Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: a post-earthquake geospatial study in Haiti. PLoS Med. 8(8), e1001083 (2011)

    Article  Google Scholar 

  38. CNN: Haiti earthquake fast facts. http://www.cnn.com/2013/12/12/world/haiti-earthquake-fast-facts/ (2013). [Online]; Accessed 21 Dec 2013

  39. Curtis, A., Mills, J.W.: Spatial video data collection in a post-disaster landscape: the Tuscaloosa tornado of April 27th 2011. Appl. Geogr. 32(2), 393–400 (2012)

    Article  Google Scholar 

  40. de Sherbinin, A.: Climate change hotspots mapping: what have we learned? Clim. Change. 123(1), 23–37 (2014)

    Article  Google Scholar 

  41. Fluet-Chouinard, E., Lehner, B., Rebelo, L.-M., Papa, F., Hamilton, S.K.: Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 158, 348–361 (2015)

    Article  Google Scholar 

  42. Barrington, L., Ghosh, S., Greene, M., Har-Noy, S., Berger, J., Gill, S., Lin, A.Y.-M., Huyck, C.: Crowdsourcing earthquake damage assessment using remote sensing imagery. Ann. Geophys. 54(6), (2012)

    Google Scholar 

  43. Ofli, F., Meier, P., Imran, M., Castillo, C., Tuia, D., Rey, N., Briant, J., Millet, P., Reinhard, F., Parkan, M., et al.: Combining human computing and machine learning to make sense of big (aerial) data for disaster response. Big Data. 4(1), 47–59 (2016)

    Article  Google Scholar 

  44. Camerono, S., Hailes, S., Julier, S., McCleanu, S., Parru, G., Trigonio, N., Ahmed, M., McPhillips, G., De Nardil, R., Nieu, J., et al.: SUAAVE: combining aerial robots and wireless networking. In: 25th Bristol International UAV Systems Conference, pp. 1–14. Citeseer, Princeton, NJ (2010)

    Google Scholar 

  45. How, J.P., Behihke, B., Frank, A., Dale, D., Vian, J.: Real-time indoor autonomous vehicle test environment. IEEE Control Syst. 28(2), 51–64 (2008)

    Article  MathSciNet  Google Scholar 

  46. Clark, R., Punzo, G., Dobie, G., Summan, R., MacLeod, C.N., Pierce, G., Macdonald, M.: Autonomous swarm testbed with multiple quadcopters. In: 1st World Congress on Unmanned Systems Enginenering, 2014-WCUSEng (2014)

    Google Scholar 

  47. Li, W., Shen, W.: Swarm behavior control of mobile multi-robots with wireless sensor networks. J. Netw. Comput. Appl. 34(4), 1398–1407 (2011)

    Article  Google Scholar 

  48. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley, Chichester (2006)

    Google Scholar 

  49. Kolias, C., Kambourakis, G., Maragoudakis, M.: Swarm intelligence in intrusion detection: a survey. Comput. Secur. 30(8), 625–642 (2011)

    Article  Google Scholar 

  50. Ab Wahab, M.N., Nefti-Meziani, S., Atyabi, A.: A comprehensive review of swarm optimization algorithms. PloS One. 10(5), e0122827 (2015)

    Article  Google Scholar 

  51. Chu, S.C., Huang, H.C., Roddick, J.F., Pan, J.S.: Overview of algorithms for swarm intelligence. In: International Conference on Computational Collective Intelligence, pp. 28–41. Springer (2011)

    Google Scholar 

  52. American Technology Network Corp: Night vision technology. https://www.atncorp.com/hownightvisionworks (2016). [Online]; Accessed 16 Mar 2016

  53. CVEL: Night vision systems. http://www.cvel.clemson.edu/auto/systems/night-vision.html (2016). [Online]; Accessed 12 Dec 2016

  54. Josh Briggs: How in-dash night-vision systems work. http://electronics.howstuffworks.com/gadgets/automotive/in-dash-night-vision-system.htm (2016). [Online]; Accessed 30 Aug 2016

  55. Computer Reports: Driving a BMW with night vision proves illuminating. http://www.consumerreports.org/cro/-news/2014/10/driving-a-bmw-with-night-vision-proves-illuminating/index.htm (2016). [Online]; Accessed 18 Sept 2016

  56. Autoliv AB: Autolive. https://www.autoliv.com/ (2016) [Online]; Accessed 6 Mar 2016

  57. Pund, D.: Night light: night-vision systems compared from BMW, Mercedes, and Audi. http://www.caranddrive.com/com-parisons/night-vision-systems-compared-bmw-vs-mercedes-benz-vs-audi-comparison-test/. (2016). [Online]; Accessed 21 May 2016

  58. Austin, M.: Intelligent adaptive cruise, autonomous braking, and green wave: what Honda’s got up its sleeve. https://www.cnet.com/roadshow/news/autoliv-aims-night-vision-at-mass-market/ (2016). [Online]; Accessed 21 Nov 2016

  59. Autoliv: Audi night vision assistant. http://www.autolivnightvision.com/vehicles/audi/ (2016) [Online]; Accessed 8 Nov 2016

  60. Ahire, A.S.: Night vision system in BMW. International Review of Applied Engineering Research. 4(1), 1–10 (2014)

    Google Scholar 

  61. Autoliv: Night vision for Rolls-Royce. http://autoliv2.managecontent.com/the-technology-behind-night-vision/rolls-royce (2016). [Online]; Accessed 15 Nov 2016

  62. Road Show: Autoliv aims night vision at mass market. https://www.cnet.com/roadshow/news/autoliv-aims-night-vision-at-mass-market/ (2016). [Online]; Accessed 15 Nov 2016

  63. Crowder, J.A., Carbone, J.N., Friess, S.A.: Artificial Cognition Architectures. Springer, New York (2014)

    Book  Google Scholar 

  64. Carbone, J.N.: A Framework for enhancing transdisciplinary research knowledge. PhD dissertation, Texas Tech University (2010)

    Google Scholar 

  65. Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M., Dolan, J., Duggins, D., Galatali, T., Geyer, C., et al.: Autonomous driving in urban environments: boss and the urban challenge. J. Field Rob. 25(8), 425–466 (2008)

    Article  Google Scholar 

  66. Xu, F., Liu, X., Fujimura, K.: Pedestrian detection and tracking with night vision. IEEE Trans. Intell. Transp. Syst. 6(1), 63–71 (2005)

    Article  Google Scholar 

  67. Bliss, D.W., Forsythe, K.W., Chan, A.M.: MIMO wireless communication. Lincoln Lab. J. 15(1), 97–126 (2005)

    Google Scholar 

  68. Shannon, C.E.: Communication in the presence of noise. Proc. IRE. 37(1), 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  69. Berge, C.: Stability number. In: Graphs and Hypergraphs, pp. 272–302. American Elsevier Publishing Company, New York (1973)

    Google Scholar 

  70. Dargie, W., Poellabauer, C.: Fundamentals of Wireless Sensor Networks: Theory and Practice. Wiley, Chichester (2010)

    Book  Google Scholar 

  71. Güldal, S.: Modeling and analysis of systems using the least action principle in information theory. University of Alabama at Birmingham, Interdisciplinary Engineering Program. Birmingham, AL: Ph.D. dissertation, Interdisciplinary Engineering Program, University of Alabama at Birmingham (2016)

    Google Scholar 

  72. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theor. Comput. Sci. 344(2–3), 243–278 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  73. Wu, D., Arkhipov, D.I., Kim, M., Talcott, C.L., Regan, A.C., McCann, J.A., Venkatasubramanian, N.: Addsen: adaptive data processing and dissemination for drone swarms in urban sensing. IEEE Trans. Comput. 66(2), 183–198 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. John Tanik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tanik, U.J., Wang, Y., Güldal, S. (2017). Swarm Intelligence Applied to Big Data Analytics for Rescue Operations with RASEN Sensor Networks. In: Suh, S., Anthony, T. (eds) Big Data and Visual Analytics. Springer, Cham. https://doi.org/10.1007/978-3-319-63917-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63917-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63915-4

  • Online ISBN: 978-3-319-63917-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics