Skip to main content

Entropy of a Generic Null Surface from Its Associated Virasoro Algebra

  • Chapter
  • First Online:
Classical and Quantum Aspects of Gravity in Relation to the Emergent Paradigm

Part of the book series: Springer Theses ((Springer Theses))

  • 354 Accesses

Abstract

Null surfaces act as one-way membranes, blocking information from those observers who do not cross them. These observers associate an entropy (and temperature) with the null surface. In this spirit the black hole entropy can be computed from the central charge of an appropriately defined, local, Virasoro algebra on the horizon. In this chapter, we demonstrate that one can extend these ideas to a general class of null surfaces, all of which possess a Virasoro algebra and a central charge, leading to an entropy density which is just (1/4). All the previously known results arise as special cases of this very general property of null surfaces and the result represented here provides the derivation of the entropy-area law in the most general context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Padmanabhan, Gravitation: Foundations and Frontiers (Cambridge University Press, Cambridge, UK, 2010)

    Book  MATH  Google Scholar 

  2. J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)

    Google Scholar 

  3. J. D. Bekenstein, Generalized second law of thermodynamics in black hole physics. Phys. Rev. D 9, 3292–3300 (1974)

    Google Scholar 

  4. J.D. Bekenstein, Statistical black hole thermodynamics. Phys. Rev. D 12, 3077–3085 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. P. Davies, Scalar particle production in Schwarzschild and Rindler metrics. J. Phys. A 8, 609–616 (1975)

    Google Scholar 

  7. W. Unruh, Notes on black hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  8. T. Padmanabhan, Thermodynamical aspects of gravity: new insights. Rept. Prog. Phys. 73, 046901 (2010). arXiv:0911.5004 [gr-qc]

  9. T. Padmanabhan, General relativity from a thermodynamic perspective. Gen. Rel. Grav. 46, 1673 (2014). arXiv:1312.3253 [gr-qc]

  10. B. Zwiebach, A first course in string theory, (Cambridge University Press, 2006), http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521831431

  11. J.L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories. Nucl. Phys. B 270, 186–204 (1986)

    Google Scholar 

  12. H.W.J. Bloete, J.L. Cardy, M.P. Nightingale, Conformal ivariance, the central charge, and universal finite size amplitudes at criticality. Phys. Rev. Lett. 56, 742–745 (1986)

    Google Scholar 

  13. S. Carlip, Entropy from conformal field theory at killing horizons. Class. Quant. Grav. 16, 3327–3348 (1999). arXiv:gr-qc/9906126 [gr-qc]

  14. S. Carlip, Black hole thermodynamics. Int. J. Mod. Phys. D 23, 1430023 (2014). arXiv:1410.1486 [gr-qc]

  15. O. Dreyer, A. Ghosh, J. Wisniewski, Black hole entropy calculations based on symmetries. Class. Quant. Grav. 18, 1929–1938 (2001). arXiv:hep-th/0101117 [hep-th]

  16. S. Silva, Black hole entropy and thermodynamics from symmetries. Class. Quant. Grav. 19, 3947–3962 (2002). arXiv:hep-th/0204179 [hep-th]

  17. S. Carlip, Symmetries, horizons, and black hole entropy. Gen. Rel. Grav. 39, 1519–1523 (2007). arXiv:0705.3024 [gr-qc]. [Int. J. Mod. Phys.D17,659(2008)]

  18. O. Dreyer, A. Ghosh, A. Ghosh, Entropy from near-horizon geometries of Killing horizons. Phys. Rev. D 89(2), 024035 (2014). arXiv:1306.5063 [gr-qc]

  19. G. Kang, J.-i. Koga, M.-I. Park, Near horizon conformal symmetry and black hole entropy in any dimension. Phys. Rev. D 70, 024005 (2004). arXiv:hep-th/0402113 [hep-th]

  20. B.R. Majhi, T. Padmanabhan, Noether current, horizon virasoro algebra and entropy. Phys. Rev. D 85, 084040 (2012). arXiv:1111.1809 [gr-qc]

  21. B.R. Majhi, T. Padmanabhan, Noether current from the surface term of gravitational action, virasoro algebra and horizon entropy. Phys. Rev. D 86, 101501 (2012). arXiv:1204.1422 [gr-qc]

  22. B.R. Majhi, T. Padmanabhan, Thermality and heat content of horizons from infinitesimal coordinate transformations. arXiv:1302.1206 [gr-qc]

  23. B.R. Majhi, Conformal transformation, near horizon symmetry, virasoro algebra and entropy. Phys. Rev. D 90(4), 044020 (2014). arXiv:1404.6930 [gr-qc]

  24. B.R. Majhi, Thermodynamics of Sultana-Dyer black hole. JCAP 1405, 014 (2014). arXiv:1403.4058 [gr-qc]

  25. S. Bhattacharya, A note on entropy of de Sitter black holes. Eur. Phys. J. C 76(3), 112 (2016). arXiv:1506.07809 [gr-qc]

  26. S. Chakraborty, T. Padmanabhan, Thermodynamical interpretation of the geometrical variables associated with null surfaces. Phys. Rev. D 92(10), 104011 (2015). arXiv:1508.04060 [gr-qc]

  27. K. Parattu, S. Chakraborty, B.R. Majhi, T. Padmanabhan, Null surfaces: counter-term for the action principle and the characterization of the gravitational degrees of freedom. arXiv:1501.01053 [gr-qc]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Chakraborty .

Appendix

Appendix

For the sake of completeness, we derive the bracket for the Noether charge associated with the vectors as given in Eq. (8.4).

The normalized normal to \(r=\text {constant}\) surface corresponds to,

$$\begin{aligned} N_{a}&=\left( 0,\frac{1}{\sqrt{2r\alpha +r^{2}\beta ^{2}}},0,0\right) \end{aligned}$$
(8.14)
$$\begin{aligned} N^{a}&=\left( \frac{1}{\sqrt{2r\alpha +r^{2}\beta ^{2}}},\sqrt{2r\alpha +r^{2}\beta ^{2}},\frac{r\beta ^{A}}{\sqrt{2r\alpha +r^{2}\beta ^{2}}}\right) \end{aligned}$$
(8.15)

The extrinsic curvature of the \(r=0\) surface can be computed easily using the above normalized normal \(N_{a}\) as,

$$\begin{aligned} K&=-\nabla _{a}N^{a}=-\partial _{a}N^{a}-N^{a}\partial _{a}\ln \sqrt{-g} \nonumber \\&=-\partial _{u}\left( \frac{1}{\sqrt{2r\alpha +r^{2}\beta ^{2}}}\right) -\partial _{r}\sqrt{2r\alpha +r^{2}\beta ^{2}} \nonumber \\&=-\frac{\alpha }{\sqrt{2r\alpha +r^{2}\beta ^{2}}} \end{aligned}$$
(8.16)

The corresponding non-zero component of the Noether potential associated with the Noether charge on \(r=0\) surface yield,

$$\begin{aligned} J^{ur}&=K\xi ^{u}n^{r}-K\xi ^{r}n^{u} \nonumber \\&=-\left( \alpha -\frac{\partial _{u}\alpha }{2\alpha }\right) \left( F+\frac{\partial _{u}F}{2\alpha }\right) \end{aligned}$$
(8.17)

Finally the relevant component of the Noether current for calculation of the bracket between Noether charges becomes

$$\begin{aligned} J^{r}&=\partial _{u}J^{ru}+\partial _{A}J^{rA}+J^{rA}\partial _{A}\ln \sqrt{-g} \nonumber \\&=\partial _{u}\left[ \alpha \left( F+\frac{\partial _{u}F}{2\alpha }\right) \right] \nonumber \\&=\alpha \partial _{u}F+\frac{1}{2}\partial _{u}^{2}F \end{aligned}$$
(8.18)

The other normalized vector (the time evolution vector) corresponds to,

$$\begin{aligned} M^{a}&=\left( \frac{1}{\sqrt{2r\alpha }},0,0,0\right) \end{aligned}$$
(8.19)
$$\begin{aligned} M_{a}&=\left( -\sqrt{2r\alpha },\frac{1}{\sqrt{2r\alpha }},-\frac{r\beta ^{A}}{\sqrt{2r\alpha }}\right) \end{aligned}$$
(8.20)

Hence one arrives at on the \(r=0\) surface,

$$\begin{aligned} d\Sigma _{ab}J^{ab}&=-d^{2}x\sqrt{q}\left( n_{a}M_{b}-n_{b}M_{a}\right) J^{ab} \nonumber \\&=2d^{2}x\sqrt{q}\alpha \left( F+\frac{\partial _{u}F}{2\alpha }\right) \end{aligned}$$
(8.21)

Thus the Noether charge becomes,

$$\begin{aligned} Q[\xi ]=\frac{1}{2}\int d\Sigma _{ab}J^{ab}=\int d^{2}x\sqrt{q}\alpha \left( F+\frac{\partial _{u}F}{2\alpha }\right) \end{aligned}$$
(8.22)

The commutator reads,

$$\begin{aligned}{}[Q_{1},Q_{2}]&=\int d^{2}x \sqrt{q}\left\{ \left( F_{1}+\frac{\partial _{u}F_{1}}{2\alpha }\right) \left( \alpha \partial _{u}F_{2} \frac{1}{2}\partial _{u}^{2}F \right) -\left( 1\leftrightarrow 2\right) \right\} \nonumber \\&=\int d^{2}x\sqrt{q}\Bigg [\alpha \left( F_{1}\partial _{u}F_{2}-F_{2}\partial _{u}F_{1}\right) +\frac{1}{2}\left( F_{1}\partial _{u}^{2}F_{2}-F_{2}\partial _{u}^{2}F_{1}\right) \nonumber \\&+\frac{1}{4\alpha }\left( \partial _{u}F_{1}\partial _{u}^{2}F_{2}-\partial _{u}F_{2}\partial _{u}^{2}F_{1}\right) \Bigg ] \end{aligned}$$
(8.23)

Then with the ansatz for F(u) as in Eq. (8.8) will lead to the Fourier space commutator bracket Eq. (8.10).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chakraborty, S. (2017). Entropy of a Generic Null Surface from Its Associated Virasoro Algebra. In: Classical and Quantum Aspects of Gravity in Relation to the Emergent Paradigm. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63733-4_8

Download citation

Publish with us

Policies and ethics