Skip to main content

Thermodynamic Interpretation of Geometrical Variables

  • Chapter
  • First Online:
Classical and Quantum Aspects of Gravity in Relation to the Emergent Paradigm

Part of the book series: Springer Theses ((Springer Theses))

  • 356 Accesses

Abstract

In general relativity there exist two variables whose variations when integrated over a null surface, have direct correspondence with variations of temperature and entropy. Using two such variables for Lanczos-Lovelock gravity we show that the variation of the surface term in the action, when evaluated on a null surface, has direct thermodynamic interpretation as in the case of general relativity. Further the variations of these two variables again correspond to variations of temperature and of the appropriate Wald entropy for the Lanczos-Lovelock model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Mukhopadhyay, T. Padmanabhan, Holography of gravitational action functionals. Phys. Rev. D 74, 124023 (2006). arXiv:hep-th/0608120

  2. S. Kolekar, D. Kothawala, T. Padmanabhan, Two aspects of black hole entropy in Lanczos-Lovelock models of gravity. Phys. Rev. D 85, 064031 (2012). arXiv:1111.0973 [gr-qc]

  3. T. Padmanabhan, Holographic gravity and the surface term in the Einstein-Hilbert action. Braz. J. Phys. 35, 362–372 (2005). arXiv:gr-qc/0412068 [gr-qc]

  4. T. Padmanabhan, Equipartition of energy in the horizon degrees of freedom and the emergence of gravity. Mod. Phys. Lett. A 25, 1129–1136 (2010). arXiv:0912.3165 [gr-qc]

  5. T. Padmanabhan, Entropy density of spacetime and the Navier-Stokes fluid dynamics of null surfaces. Phys. Rev. D 83, 044048 (2011). arXiv:1012.0119 [gr-qc]

  6. S. Kolekar, T. Padmanabhan, Action principle for the fluid-gravity correspondence and emergent gravity. Phys. Rev. D 85, 024004 (2012). arXiv:1109.5353 [gr-qc]

  7. T. Padmanabhan, Surface density of spacetime degrees of freedom from equipartition law in theories of gravity. Phys. Rev. D 81, 124040 (2010). arXiv:1003.5665 [gr-qc]

  8. K. Parattu, B.R. Majhi, T. Padmanabhan, Structure of the gravitational action and its relation with horizon thermodynamics and emergent gravity paradigm. Phys. Rev. D 87, 124011 (2013). arXiv:gr-qc/1303.1535 [gr-qc], doi:10.1103/PhysRevD.87.124011

  9. A. Medved, D. Martin, M. Visser, Dirty black holes: space-time geometry and near horizon symmetries. Class. Quantum. Gravity 21, 3111–3126 (2004). arXiv:gr-qc/0402069 [gr-qc]

  10. K. Parattu, S. Chakraborty, B.R. Majhi, T. Padmanabhan, Null Surfaces: Counter-term for the Action Principle and the Characterization of the Gravitational Degrees of Freedom. arXiv:1501.01053 [gr-qc]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Chakraborty .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chakraborty, S. (2017). Thermodynamic Interpretation of Geometrical Variables. In: Classical and Quantum Aspects of Gravity in Relation to the Emergent Paradigm. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63733-4_4

Download citation

Publish with us

Policies and ethics