Skip to main content

Alternative Geometrical Variables in Lanczos-Lovelock Gravity

  • Chapter
  • First Online:
Classical and Quantum Aspects of Gravity in Relation to the Emergent Paradigm

Part of the book series: Springer Theses ((Springer Theses))

  • 361 Accesses

Abstract

It has been shown in the context of general relativity that there exists a pair of canonically conjugate variables, which also act as thermodynamically conjugate variables on any horizon. We generalize these results to Lanczos-Lovelock gravity in this chapter by identifying two such conjugate variables. Our results do reduce to that of general relativity in the appropriate limit and provides a complete geometrical understanding of Lanczos-Lovelock gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Padmanabhan, Gravity and the thermodynamics of horizons. Phys. Rep. 406, 49–125 (2005). arXiv:gr-qc/0311036 [gr-qc]

  2. R.M. Wald, The thermodynamics of black holes. Living Rev. Relativ. 4, 6 (2001). arXiv:gr-qc/9912119 [gr-qc]

  3. T. Padmanabhan, Thermodynamical aspects of gravity: new insights. Rep. Prog. Phys. 73, 046901 (2010). arXiv:0911.5004 [gr-qc]

  4. T. Padmanabhan, Classical and quantum thermodynamics of horizons in spherically symmetric space-times. Class. Quantum Gravity 19, 5387–5408 (2002). arXiv:gr-qc/0204019 [gr-qc]

  5. R.-G. Cai, S.P. Kim, First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe. JHEP 0502, 050 (2005). arXiv:hep-th/0501055 [hep-th]

  6. A. Paranjape, S. Sarkar, T. Padmanabhan, Thermodynamic route to field equations in Lancos-Lovelock gravity. Phys. Rev. D 74, 104015 (2006). arXiv:hep-th/0607240 [hep-th]

  7. T. Padmanabhan, A. Paranjape, Entropy of null surfaces and dynamics of spacetime. Phys. Rev. D 75, 064004 (2007). arXiv:gr-qc/0701003 [gr-qc]

  8. S. Kolekar, T. Padmanabhan, Action principle for the fluid-gravity correspondence and emergent gravity. Phys. Rev. D 85, 024004 (2012). arXiv:1109.5353 [gr-qc]

  9. T. Padmanabhan, General relativity from a thermodynamic perspective. Gen. Relativ. Gravit. 46, 1673 (2014). arXiv:1312.3253 [gr-qc]

  10. K. Parattu, B.R. Majhi, T. Padmanabhan, Structure of the gravitational action and its relation with horizon thermodynamics and emergent gravity paradigm. Phys. Rev. D 87, 124011 (2013). arXiv:gr-qc/1303.1535 [gr-qc], doi:10.1103/PhysRevD.87.124011

  11. T. Padmanabhan, Gravitation: Foundations and Frontiers (Cambridge University Press, Cambridge, UK, 2010)

    Google Scholar 

  12. Q. Exirifard, M.M. Sheikh-Jabbari, Lovelock gravity at the crossroads of Palatini and metric formulations. Phys. Lett. B 661, 158–161 (2008). arXiv:0705.1879 [hep-th]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Chakraborty .

Appendices

Appendix

In this appendix, we shall present the supplementary material for this chapter.

A.1 Identities Regarding Lie Variation of \(P^{abcd}\)

In this section we shall derive some identities related to Lie variation of the entropy tensor, \(P^{abcd}\). For that purpose we first consider Lie variation of the Lagrangian treated as a scalar function of the metric \(g_{ab}\) and \(R_{abcd}\) leading to

$$\begin{aligned} \pounds _{\xi }L\left( g_{ab},R_{ijkl}\right)&=\xi ^{m}\nabla _{m}L\left( g_{ab},R_{ijkl}\right) \nonumber \\&=\frac{\partial L}{\partial g_{ab}}\xi ^{m}\nabla _{m}g_{ab}+\frac{\partial L}{\partial R_{ijkl}} \xi ^{m}\nabla _{m}R_{ijkl} \nonumber \\&=P^{ijkl}\xi ^{m}\nabla _{m}R_{ijkl} \end{aligned}$$
(3.29)

where we have used the fact that covariant derivative of metric tensor vanishes. Then for the Lagrangian which is homogeneous function of degree m we get

$$\begin{aligned} \pounds _{\xi }L=\xi ^{m}\nabla _{m}\left( \frac{1}{m}P^{ijkl}R_{ijkl}\right) \end{aligned}$$
(3.30)

Then using Eq. (3.29) we readily obtain

$$\begin{aligned} R_{abcd}\xi ^{m}\nabla _{m}P^{abcd}=(m-1)P^{abcd}\xi ^{m}\nabla _{m}R_{abcd} \end{aligned}$$
(3.31)

We also have the following relation:

$$\begin{aligned} P^{ijkl}\pounds _{\xi }R_{ijkl}&=P^{ijkl}\Bigg (\xi ^{m}\nabla _{m} R_{ijkl}+R_{ajkl}\nabla _{i}\xi ^{a}+R_{iakl}\nabla _{j}\xi ^{a} \nonumber \\&+R_{ijal}\nabla _{k}\xi ^{a}+R_{ijka}\nabla _{l}\xi ^{a}\Bigg ) \nonumber \\&=P^{ijkl}\xi ^{m}\nabla _{m} R_{ijkl}+4\nabla _{i}\xi _{m}R^{i}_{~jkl}P^{mjkl} \nonumber \\&=P^{ijkl}\xi ^{m}\nabla _{m} R_{ijkl}+4\nabla _{i}\xi _{m}\mathcal {R}^{im} \end{aligned}$$
(3.32)

Again we can also write, \(m\pounds _{\xi }L=P^{ijkl}\pounds _{\xi }R_{ijkl}+R_{ijkl}\pounds _{\xi }P^{ijkl}\). Then we obtain:

$$\begin{aligned} R_{ijkl}\pounds _{\xi }P^{ijkl}= & {} m\pounds _{\xi }L-P^{ijkl}\pounds _{\xi }R_{ijkl} \nonumber \\= & {} m\pounds _{\xi }L-P^{ijkl}\xi ^{m}\nabla _{m} R_{ijkl}-4\nabla _{i}\xi _{m}\mathcal {R}^{im} \nonumber \\= & {} (m-1)P^{abcd}\xi ^{m}\nabla _{m}R_{abcd}-4\nabla _{i}\xi _{m}\mathcal {R}^{im} \end{aligned}$$
(3.33)

This equation can also be casted in a different form as

$$\begin{aligned} R_{abcd}\left( \pounds _{\xi }P^{abcd}-\xi ^{m}\nabla _{m}P^{abcd}\right) =-4\nabla _{i}\xi _{m}\mathcal {R}^{im} \end{aligned}$$
(3.34)

Now we can rewrite the metric as a function of \(g_{ab}\) and \(R^{a}_{~bcd}\), in which case the Lie variation leads to

$$\begin{aligned} \pounds _{\xi }L\left( g_{ij},R^{a}_{~bcd}\right) =P_{i}^{~jkl}\xi ^{m}\nabla _{m}R^{i}_{~jkl} \end{aligned}$$
(3.35)

With the Lagrangian as homogeneous function of curvature tensor to mth order leads to

$$\begin{aligned} R^{a}_{~bcd}\pounds _{\xi }P_{a}^{~bcd}=(m-1)P_{i}^{~jkl}\xi ^{m}\nabla _{m}R^{i}_{jkl} \end{aligned}$$
(3.36)

Then we arrive at the following identity

$$\begin{aligned} P^{abcd}\pounds _{\xi }\left( g_{am}R^{m}_{~bcd}\right) =P_{a}^{~bcd}\xi ^{m}\nabla _{m}R^{a}_{~bcd} +4\nabla _{i}\xi _{m}\mathcal {R}^{im} \end{aligned}$$
(3.37)

or

$$\begin{aligned} P_{a}^{~bcd}\pounds _{\xi }R^{a}_{~bcd}= & {} P_{a}^{~bcd}\xi ^{m}\nabla _{m}R^{a}_{~bcd} +4\nabla _{i}\xi _{m}\mathcal {R}^{im}-\mathcal {R}^{am}\mathcal {L}_{\xi }g_{am} \nonumber \\= & {} P_{a}^{~bcd}\xi ^{m}\nabla _{m}R^{a}_{~bcd} +2\nabla _{i}\xi _{m}\mathcal {R}^{im} \end{aligned}$$
(3.38)

This leads to the following relation:

$$\begin{aligned} R^{a}_{~bcd}\left( \pounds _{\xi }P_{a}^{~bcd}-\xi ^{m}\nabla _{m}P_{a}^{~bcd}\right) =-2\nabla _{i}\xi _{m}\mathcal {R}^{im} \end{aligned}$$
(3.39)

If we proceed along the same lines we readily obtain another such relation given as:

$$\begin{aligned} R^{ij}_{kl}\left( \pounds _{\xi }P^{kl}_{ij}-\xi ^{m}\nabla _{m}P^{kl}_{ij}\right) =0 \end{aligned}$$
(3.40)

These relations illustrate the Lie variation of \(P^{abcd}\) when contracted with the curvature tensor.

A.2 Derivation of Various Identities Used in Text

We will consider the \(p\partial q\) and \(q\partial p\) structure arising from the identification of \(\tilde{f}^{ab}\) as coordinate and \(\tilde{N}^{c}_{ab}\) as momentum in Lanczos-Lovelock gravity. For the calculation, the following identity will be used here and there:

$$\begin{aligned} 0=\nabla _{c}Q_{ab}^{cd}= & {} \partial _{c}Q_{ab}^{cd}+\Gamma ^{c}_{ck}Q_{ab}^{kd} \nonumber \\- & {} \Gamma ^{k}_{ca}Q_{kb}^{cd}-\Gamma ^{k}_{cb}Q_{ak}^{cd}+\Gamma ^{d}_{ck}Q_{ab}^{ck} \end{aligned}$$
(3.41)

However \(Q_{ab}^{cd}\) being antisymmetric in (c,d) while \(\Gamma ^{c}_{ab}\) being symmetric in (a,b) the last term in the above expansion vanishes. Thus ordinary derivative of the quantity \(Q_{ab}^{cd}\) has the following expression

$$\begin{aligned} \partial _{c}Q_{ab}^{cd}=-\Gamma ^{c}_{ck}Q_{ab}^{kd}+\Gamma ^{k}_{ca}Q_{kb}^{cd} +\Gamma ^{k}_{cb}Q_{ak}^{cd} \end{aligned}$$
(3.42)

Note that we can include \(\sqrt{-g}\) in the above expression leading to:

$$\begin{aligned} \partial _{c}\left( \sqrt{-g}Q_{a}^{~bcd}\right) =\left( \sqrt{-g}Q_{p}^{~bcd}\right) \Gamma ^{p}_{ac}- \left( \sqrt{-g}Q_{a}^{pcd}\right) \Gamma ^{b}_{cp} \end{aligned}$$
(3.43)

Thus we get the following expression from Eq. (3.42):

$$\begin{aligned} \partial _{c}\tilde{N}^{c}_{ab}= & {} \partial _{c} \left[ Q_{bp}^{cq}\Gamma ^{p}_{aq}+Q_{ap}^{cq}\Gamma ^{p}_{bq} \right] \nonumber \\= & {} \left( \partial _{c}Q_{bp}^{cq} \right) \Gamma ^{p}_{aq}+Q_{bp}^{cq}\partial _{c}\Gamma ^{p}_{aq} +\left( \partial _{c}Q_{ap}^{cq}\right) \Gamma ^{p}_{bq}+Q_{ap}^{cq}\partial _{c}\Gamma ^{p}_{bq} \nonumber \\= & {} Q_{kp}^{cq}\Gamma ^{k}_{cb}\Gamma ^{p}_{aq}+Q_{bk}^{cq}\Gamma ^{k}_{cp}\Gamma ^{p}_{aq} -Q_{bp}^{kq}\Gamma ^{p}_{aq}\Gamma ^{c}_{ck}+Q_{kp}^{cq}\Gamma ^{k}_{ca}\Gamma ^{p}_{bq} \nonumber \\+ & {} Q_{ak}^{cq}\Gamma ^{k}_{cp}\Gamma ^{p}_{bq}-Q_{ap}^{kq}\Gamma ^{c}_{ck}\Gamma ^{p}_{bq} +Q_{bp}^{cq}\partial _{c}\Gamma ^{p}_{aq}+Q_{ap}^{cq}\partial _{c}\Gamma ^{p}_{bq} \end{aligned}$$
(3.44)

where in order to arrive at the last equality Eq. (3.42) has been used. Now contracting the above expression with \(\tilde{f}^{ab}\) we readily obtain

$$\begin{aligned} \tilde{f}^{ab}\partial _{c}\tilde{N}^{c}_{ab}= & {} \sqrt{-g}g^{ab} \left[ 2Q_{ap}^{cq}\partial _{c}\Gamma ^{p}_{bq}+2Q_{kp}^{cq}\Gamma ^{k}_{ca}\Gamma ^{p}_{bq} +2Q_{ak}^{cq}\Gamma ^{k}_{cp}\Gamma ^{p}_{bq}-2Q_{ap}^{kq}\Gamma ^{c}_{ck}\Gamma ^{p}_{bq} \right] \nonumber \\= & {} -2\sqrt{-g}Q_{p}^{~bcq}\left( \partial _{c}\Gamma ^{p}_{bq}+\Gamma ^{p}_{ck}\Gamma ^{k}_{bq} \right) \nonumber \\+ & {} 2\sqrt{-g}Q_{p}^{~bkq}\Gamma ^{c}_{ck}\Gamma ^{p}_{bq} +2\sqrt{-g}g^{ab}Q_{kp}^{cq}\Gamma ^{k}_{ca}\Gamma ^{p}_{bq} \nonumber \\= & {} -\sqrt{-g}Q_{p}^{~bqc}R^{p}_{~bqc}+2\sqrt{-g}Q_{p}^{~bkq}\Gamma ^{c}_{ck}\Gamma ^{p}_{bq} +2\sqrt{-g}g^{ab}Q_{kp}^{cq}\Gamma ^{k}_{ca}\Gamma ^{p}_{bq}. \end{aligned}$$
(3.45)

Note that in the Einstein-Hilbert limit the last two terms adds up to yield \(-\sqrt{-g}L_{quad}\). Then consider the other combination which can be expressed as

$$\begin{aligned} \tilde{N}^{c}_{ab}\partial _{c}\tilde{f}^{ab}= & {} \left( Q_{ap}^{cq}\Gamma ^{p}_{qb} +Q_{bp}^{cq}\Gamma ^{p}_{qa}\right) \partial _{c}\left( \sqrt{-g}g^{ab}\right) \nonumber \\= & {} \sqrt{-g}\left( Q_{ap}^{cq}\Gamma ^{p}_{qb}+Q_{bp}^{cq}\Gamma ^{p}_{qa}\right) \left( \partial _{c}g^{ab}+g^{ab}\Gamma ^{p}_{cp} \right) \nonumber \\= & {} 2\sqrt{-g}Q_{ap}^{cq}\Gamma ^{p}_{qb}\partial _{c}g^{ab} +2\sqrt{-g}Q_{p}^{~bqc}\Gamma ^{p}_{qb}\Gamma ^{m}_{cm} \nonumber \\= & {} 2\sqrt{-g}Q_{p}^{~bcq}\Gamma ^{l}_{bc}\Gamma ^{p}_{ql} +2\sqrt{-g}Q_{p}^{~bqc}\Gamma ^{p}_{qb}\Gamma ^{m}_{cm} -2\sqrt{-g}g^{bm}Q_{ap}^{cq}\Gamma ^{p}_{qb}\Gamma ^{a}_{cm} \nonumber \\= & {} \sqrt{-g}L_{quad}+2\sqrt{-g}Q_{p}^{~bqc}\Gamma ^{p}_{qb}\Gamma ^{m}_{cm} -2\sqrt{-g}g^{bm}Q_{ap}^{cq}\Gamma ^{p}_{qb}\Gamma ^{a}_{cm}. \end{aligned}$$
(3.46)

In the Einstein-Hilbert limit the above term leads to \(2\sqrt{-g}L_{quad}\). Next we will derive similar relations which actually behaves as conjugate variables, with the identification, \(p\equiv 2\sqrt{-g}Q_{a}^{~bcd}\) and \(q\equiv \Gamma ^{a}_{bc}\). Then the respective \(p\partial q\) and \(q\partial p\) expressions are given in the following results:

$$\begin{aligned} 2\sqrt{-g}Q_{e}^{~bdc}\partial _{c}\Gamma ^{e}_{bd}= & {} \sqrt{-g}Q_{e}^{~bdc} \left( \partial _{c}\Gamma ^{e}_{bd}-\partial _{d}\Gamma ^{e}_{bc} \right) \nonumber \\= & {} \sqrt{-g}Q_{e}^{~bdc}R^{e}_{~bcd}-2\sqrt{-g}Q_{e}^{~bdc}\Gamma ^{e}_{mc}\Gamma ^{m}_{bd} \nonumber \\= & {} -\sqrt{-g}Q_{e}^{~abc}R^{e}_{~abc}-\sqrt{-g}L_{quad} \end{aligned}$$
(3.47)

and

$$\begin{aligned} \Gamma ^{d}_{be}\partial _{c}\left( 2\sqrt{-g}Q_{d}^{~bec} \right)&= 2\sqrt{-g}\Gamma ^{d}_{be}\partial _{c}Q_{d}^{~bec}+2\Gamma ^{d}_{be}Q_{d}^{~bec}\partial _{c}\sqrt{-g} \nonumber \\&= 2\sqrt{-g}\Gamma ^{d}_{be}\left( \Gamma ^{a}_{cd}Q_{a}^{~bec}-\Gamma ^{b}_{ca}Q_{d}^{~aec} -\Gamma ^{c}_{ca}Q_{d}^{~bea} \right) \nonumber \\&+2\Gamma ^{d}_{be}Q_{d}^{~bec}\partial _{c}\sqrt{-g} \nonumber \\&=2\sqrt{-g}L_{quad} \end{aligned}$$
(3.48)

Finally we will explicitly demonstrate the result of one derivative used in the text for Lanczos-Lovelock Lagrangian:

$$\begin{aligned} \frac{\partial \left( \sqrt{-g}L\right) }{\partial \left( \partial _{l}\Gamma ^{u}_{vw}\right) }= & {} m\sqrt{-g}\delta ^{aba_{2}b_{2}\ldots a_{m}b_{m}}_{cdc_{2}d_{2}\ldots c_{m}d_{m}} \frac{\partial R^{cd}_{ab}}{\partial \left( \partial _{l}\Gamma ^{u}_{vw}\right) } R^{c_{2}d_{2}}_{a_{2}b_{2}}\ldots R_{a_{m}b_{m}}^{c_{m}d_{m}} \nonumber \\= & {} m\sqrt{-g}\delta ^{aba_{2}b_{2}\ldots a_{m}b_{m}}_{cdc_{2}d_{2}\ldots c_{m}d_{m}} \left[ g^{dp}\delta ^{c}_{u}\delta ^{v}_{p}\left( \delta ^{l}_{a}\delta ^{w}_{b}- \delta ^{l}_{b}\delta ^{w}_{a}\right) \right] R^{c_{2}d_{2}}_{a_{2}b_{2}}\ldots R_{a_{m}b_{m}}^{c_{m}d_{m}} \nonumber \\= & {} 2m\sqrt{-g}g^{dv}Q^{lw}_{ud}=mU_{u}^{~vlw} \end{aligned}$$
(3.49)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chakraborty, S. (2017). Alternative Geometrical Variables in Lanczos-Lovelock Gravity. In: Classical and Quantum Aspects of Gravity in Relation to the Emergent Paradigm. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63733-4_3

Download citation

Publish with us

Policies and ethics