Skip to main content

Spacetime with Zero Point Length is Two-Dimensional at the Planck Scale

  • Chapter
  • First Online:
Classical and Quantum Aspects of Gravity in Relation to the Emergent Paradigm

Part of the book series: Springer Theses ((Springer Theses))

  • 356 Accesses

Abstract

It is of general belief that any quantum theory of gravity should share a generic feature, namely a quantum of length. The chapter provides a physical ansatz to obtain an effective non-local metric tensor starting from the standard metric tensor such that the spacetime naturally acquires a zero-point length, of the order of the Planck length. This prescription leads to several remarkable consequences. In particular, the Euclidean volume becomes two-dimensional as the Planck scale is being approached. This suggests that the physical spacetime becomes essentially 2-dimensional near Planck scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. DeWitt, Gravity: a universal regulator? Phys. Rev. Lett. 13, 114–118 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. T. Padmanabhan, Planck length as the lower bound to all physical length scales. Gen. Relativ. Gravit. 17, 215–221 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  3. T. Padmanabhan, Physical significance of planck length. Ann. Phys. 165, 38–58 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Padmanabhan, Duality and zero point length of space-time. Phys. Rev. Lett. 78, 1854–1857 (1997). arXiv:hep-th/9608182 [hep-th]

  5. L.J. Garay, Space-time foam as a quantum thermal bath. Phys. Rev. Lett. 80, 2508–2511 (1998). arXiv:gr-qc/9801024 [gr-qc]

  6. L.J. Garay, Quantum gravity and minimum length. Int. J. Mod. Phys. A 10, 145–166 (1995). arXiv:gr-qc/9403008 [gr-qc]

  7. D. Kothawala, T. Padmanabhan, Entropy density of spacetime as a relic from quantum gravity. Phys. Rev. 90(12), 124060 (2014). arXiv:1405.4967 [gr-qc]

  8. G. ’t Hooft, Quantum gravity: a fundamental problem and some radical ideas, in Recent Developments in Gravitation, ed. by M. Levi, S. Deser (Plenum, New York/London, 1978)

    Google Scholar 

  9. D. Kothawala, Minimal length and small scale structure of spacetime. Phys. Rev. D 88(10), 104029 (2013). arXiv:1307.5618 [gr-qc]

  10. D.J. Stargen, D. Kothawala, Small scale structure of spacetime: the van Vleck determinant and equigeodesic surfaces. Phys. Rev. D 92(2), 024046 (2015). arXiv:1503.03793 [gr-qc]

  11. D. Kothawala, T. Padmanabhan, Entropy density of spacetime from the zero point length. Phys. Lett. B 748, 67–69 (2015). arXiv:1408.3963 [gr-qc]

  12. S. Chakraborty and T. Padmanabhan, “Under Preparation,” Under Preparation (2016)

    Google Scholar 

  13. A. Gray, The volume of a small geodesic ball of a Riemannian manifold. Mich. Math. J 20, 329 (1973)

    MathSciNet  MATH  Google Scholar 

  14. S. Carlip, R.A. Mosna, J.P.M. Pitelli, Vacuum fluctuations and the small scale structure of spacetime. Phys. Rev. Lett. 107, 021303 (2011). arXiv:1103.5993 [gr-qc]

  15. S. Carlip, The small scale structure of spacetime,” in Proceedings, Foundations of Space and Time: Reflections on Quantum Gravity (2009), pp. 69–84. arXiv:1009.1136 [gr-qc], https://inspirehep.net/record/867166/files/arXiv:1009.1136.pdf

  16. S. Carlip, Spontaneous dimensional reduction in short-distance quantum gravity? AIP Conf. Proc. 1196, 72 (2009). arXiv:0909.3329 [gr-qc]

  17. G. Calcagni, Fractal universe and quantum gravity. Phys. Rev. Lett. 104, 251301 (2010). arXiv:0912.3142 [hep-th]

  18. J. Ambjorn, J. Jurkiewicz, R. Loll, Spectral dimension of the universe. Phys. Rev. Lett. 95, 171301 (2005). arXiv:hep-th/0505113 [hep-th]

  19. J. Ambjorn, J. Jurkiewicz, R. Loll, Reconstructing the universe. Phys. Rev. D 72, 064014 (2005). arXiv:hep-th/0505154 [hep-th]

  20. L. Modesto, Fractal structure of loop quantum gravity. Class. Quantum Gravity 26, 242002 (2009). arXiv:0812.2214 [gr-qc]

  21. G. Calcagni, D. Oriti, J. Thurigen, Laplacians on discrete and quantum geometries. Class. Quantum Gravity 30, 125006 (2013). arXiv:1208.0354 [hep-th]

  22. G. Calcagni, D. Oriti, J. ThÃŒrigen, Spectral dimension of quantum geometries. Class. Quantum Gravity 31, 135014 (2014). arXiv:1311.3340 [hep-th]

  23. V. Husain, S.S. Seahra, E.J. Webster, High energy modifications of blackbody radiation and dimensional reduction. Phys. Rev. D 88(2), 024014 (2013). arXiv:1305.2814 [hep-th]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Chakraborty .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chakraborty, S. (2017). Spacetime with Zero Point Length is Two-Dimensional at the Planck Scale. In: Classical and Quantum Aspects of Gravity in Relation to the Emergent Paradigm. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63733-4_12

Download citation

Publish with us

Policies and ethics