Skip to main content

High-Precision Test of Landauer’s Principle

  • Chapter
  • First Online:
Experiments on the Thermodynamics of Information Processing

Part of the book series: Springer Theses ((Springer Theses))

  • 447 Accesses

Abstract

Here, I test Landauer’s 1961 hypothesis that erasing a symmetric one-bit memory requires work of at least \(kT \ln 2\). This experiment uses a colloidal particle in a time-dependent, virtual potential created by a feedback trap to implement Landauer’s erasure operation. In a control experiment, similar manipulations that do not erase can be done without work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The asymptotic work W of a “reset” operation with success rate p is \( W = kT [ \ln (2) + p \ln (p) + (1- p )\ln (1-p)]\). See Chap. 8.

  2. 2.

    The free energy change between final and initial states is \(\Delta F=\Delta E- T \, \Delta S\), with the stochastic system entropy \(S = -k\sum _i p_i \ln p_i\). We normalize S by k, making it dimensionless. The sum is over all states in the system (here, two states—particle in left well or in right well). In our case, \(\Delta E = 0\) because we consider cyclic operations, but \(\Delta S = S_\mathrm{final} - S_\mathrm{initial} = 0\) for the no-erasure protocol (since, at the end of the cycle, \(p_0 = p_1 = 0.5\) implies \(S_\mathrm{final} = S_\mathrm{initial} = \ln 2\)) and \(\Delta S = -\ln 2\) for the full-erasure protocol (since, at cycle end, \(p_0 = 0\) and \(p_1 = 1\) implies \(S_\mathrm{final} = 0\)).

References

  1. Y. Jun, M. Gavrilov, J. Bechhoefer, High-precision test of Landauer’s principle in a feedback trap. Phys. Rev. Lett. 113, 190601 (2014)

    Article  ADS  Google Scholar 

  2. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Develop. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  3. C.H. Bennett, Logical reversibility of computation. IBM J. Res. Develop. 17, 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Sekimoto, Kinetic characterization of heat bath and the energetics of thermal ratchet models. J. Phys. Soc. Jap. 66, 1234–1237 (1997)

    Article  ADS  Google Scholar 

  5. K. Sekimoto, Stochastic Energetics (Springer, Berlin, 2010)

    Google Scholar 

  6. V. Blickle, T. Speck, L. Helden, U. Seifert, C. Bechinger, Thermodynamics of a colloidal particle in a time-dependent nonharmonic potential. Phys. Rev. Lett. 96, 070603 (2006)

    Article  ADS  Google Scholar 

  7. U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75(126001), 1–58 (2012)

    Google Scholar 

  8. R. Klages, W. Just, C. Jarzynski (eds.), Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond (Wiley, Hoboken, 2013)

    Google Scholar 

  9. A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–190 (2012)

    Article  ADS  Google Scholar 

  10. S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys. 6, 988 (2010)

    Article  Google Scholar 

  11. H.S. Leff, A.F. Rex, Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (IOP, Bristol, 2003)

    Google Scholar 

  12. A. Bérut, A. Petrosyan, S. Ciliberto, Detailed Jarzynski equality applied to a logically irreversible procedure. EPL 103, 60002 (2013)

    Article  Google Scholar 

  13. É. Roldán, I.A. Martínez, J.M.R. Parrondo, D. Petrov, Universal features in the energetics of symmetry breaking. Nat. Phys. 10, 457–461 (2014)

    Article  Google Scholar 

  14. L. Szilard, On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. Z. Physik 53, 840–856 (1929)

    Article  ADS  Google Scholar 

  15. J.V. Koski, V.F. Maisi, J.P. Pekola, D.V. Averin, Experimental realization of a Szilard engine with a single electron. PNAS 111, 13786–13789 (2014)

    Article  ADS  Google Scholar 

  16. R. Dillenschneider, E. Lutz, Memory erasure in small systems. Phys. Rev. Lett. 102, 210601 (2009)

    Article  ADS  Google Scholar 

  17. K. Sekimoto, S. Sasa, Complementarity relation for irreversible process derived from stochastic energetics. J. Phys. Soc. Jap. 66(11), 3326–3328 (1997)

    Article  ADS  Google Scholar 

  18. T. Schmiedl, U. Seifert, Efficiency at maximum power: an analytically solvable model for stochastic heat engines. EPL (Europhys. Lett.), 20003 (2008)

    Google Scholar 

  19. E. Aurell, K. Gawȩdzki, C. Mejía-Monasterio, R. Mohayaee, P. Muratore-Ginanneschi, Refined second law of thermodynamics for fast random processes. J. Stat. Phys. 147, 487–505 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. V. Blickle, C. Bechinger, Realization of a micrometre-sized stochastic heat engine. Nat. Phys. 8(2), 143–146 (2012)

    Article  Google Scholar 

  21. G.M. Wang, E.M. Sevick, E. Mittag, D.J. Searles, D.J. Evans, Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett. 89, 050601 (2002)

    Article  ADS  Google Scholar 

  22. C. Jarzynski, Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale. Annu. Rev. Condens. Matter Phys. 2, 329–351 (2011)

    Article  ADS  Google Scholar 

  23. A.E. Cohen, Control of nanoparticles with arbitrary two-dimensional force fields. Phys. Rev. Lett. 94, 118102 (2005)

    Article  ADS  Google Scholar 

  24. M. Esposito, C. Van den Broeck, Second law and Landauer principle far from equilibrium. EPL (Europhys. Lett.) 95(40004), 1–6 (2011)

    Google Scholar 

  25. T. Sagawa, Thermodynamic and logical reversibilities revisited. J. Stat. Mech., P03025 (2014)

    Google Scholar 

  26. E. Pop, Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147–169 (2010)

    Article  Google Scholar 

  27. G. Lan, P. Sartori, S. Neumann, V. Sourjik, T. Yuhai, The energy-speed-accuracy trade-off in sensory adaptation. Nat. Phys. 8, 422–428 (2012)

    Article  Google Scholar 

  28. A.E. Cohen, W.E. Moerner, Method for trapping and manipulating nanoscale objects in solution. App. Phys. Lett. 86, 093109 (2005)

    Article  ADS  Google Scholar 

  29. P. Hänggi, P. Talkner, M. Borkovec, Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momčilo Gavrilov .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gavrilov, M. (2017). High-Precision Test of Landauer’s Principle. In: Experiments on the Thermodynamics of Information Processing. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63694-8_4

Download citation

Publish with us

Policies and ethics