Skip to main content

Real-Time Calibration of a Feedback Trap

  • Chapter
  • First Online:
Experiments on the Thermodynamics of Information Processing

Part of the book series: Springer Theses ((Springer Theses))

  • 416 Accesses

Abstract

Feedback traps use closed-loop control to trap or manipulate small particles and molecules in solution. They have been applied to the measurement of physical and chemical properties of particles and to explore fundamental questions in the non-equilibrium statistical mechanics of small systems. These applications have been hampered by drifts in the electric forces used to manipulate the particles. Although the drifts are small for measurements on the order of seconds, they dominate on time scales of minutes or slower. Here, we show that a recursive maximum likelihood (RML) algorithm can allow real-time measurement and control of electric and stochastic forces over time scales of hours. Simulations show that the RML algorithm recovers known parameters accurately. Experimental estimates of diffusion coefficients are also consistent with expected physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The drag \(\gamma \) is also referred as the friction coefficient in the literature [10].

References

  1. A. Cho, One cool way to erase information. Science 332, 171 (2011)

    ADSĀ  Google ScholarĀ 

  2. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183ā€“191 (1961)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  3. A. BĆ©rut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of Landauerā€™s principle linking information and thermodynamics. Nature 483, 187ā€“190 (2012)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  4. Q. Wang, W.E. Moerner, Single-molecule motions enable direct visualization of biomolecular interactions in solution. Nat. Methods 11(5), 556ā€“558 (2014)

    ArticleĀ  Google ScholarĀ 

  5. M.Ā Gavrilov, Y.Ā Jun, J.Ā Bechhoefer, Real-time calibration of a feedback trap. Rev. Sci. Instrum. 85(9) (2014)

    Google ScholarĀ 

  6. Y. Jun, J. Bechhoefer, Virtual potentials for feedback traps. Phys. Rev. E 86, 061106 (2012)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  7. M. Goulian, S.M. Simon, Tracking single proteins within cells. Biophys. J. 79, 2188ā€“2198 (2000)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  8. T. Savin, P.S. Doyle, Static and dynamic errors in particle tracking microrheology. Biophys. J. 88, 623ā€“638 (2005)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  9. A.E. Cohen, Trapping and Manipulating Single Molecules in Solution. Ph.D. thesis, Stanford University (2006)

    Google ScholarĀ 

  10. N.G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland Personal Library (Elsevier Science, London, 1992)

    MATHĀ  Google ScholarĀ 

  11. M. Gavrilov, Y. Jun, J. Bechhoefer, Particle dynamics in a virtual harmonic potential, in Proceeding of SPIE, vol. 8810 (2013)

    Google ScholarĀ 

  12. K.J. Ć…strƶm, B.Ā Wittenmark, Adaptive Control, 2nd edn. (Dover, New York, 2008)

    Google ScholarĀ 

  13. J. Bechhoefer, Feedback for physicists: a tutorial essay on control. Rev. Mod. Phys. 77, 783ā€“836 (2005)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  14. I.D. Landau, G. Zito, Digital Control Systems: Design, Identification and Implementation (Springer, Berlin, 2006)

    Google ScholarĀ 

  15. C.L. Vestergaard, P.C. Blainey, H.Ā Flyvbjerg, Optimal estimation of diffusion coefficients from single-particle trajectories. Phys. Rev. E 89, 022726 (2014)

    Google ScholarĀ 

  16. W.M. Haynes, CRC Handbook of Chemistry and Physics, 93rd edn. (Taylor & Francis, London, 2012)

    Google ScholarĀ 

  17. J.Ā Happel, H.Ā Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (Martinus Nijhoff, The Hague, 1983)

    Google ScholarĀ 

  18. S.H. Behrens, D.G. Grier, The charge of glass and silica surfaces. J. Chem. Phys. 115(14), 6716ā€“6721 (2001)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  19. Y. Jian, Q. Wang, A.E. Cohen, N. Douglas, J. Frydman, W.E. Moerner, Hardware-based anti-Brownian electrokinetic trap (ABEL trap) for single molecules: control loop simulations and application to ATP binding stoichiometry in multi-subunit enzymes, in Proceeding of SPIE - Optical Trapping and Optical Micromanipulation, vol. 703807 (2008)

    Google ScholarĀ 

  20. A.P. Fields, A.E. Cohen, Electrokinetic trapping at the one nanometer limit. PNAS 108, 8937ā€“8942 (2011)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  21. A.P. Fields, A.E. Cohen, Optimal tracking of a Brownian particle. Opt. Express 20, 22585ā€“22601 (2012)

    ArticleĀ  ADSĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MomĨilo Gavrilov .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gavrilov, M. (2017). Real-Time Calibration of a Feedback Trap. In: Experiments on the Thermodynamics of Information Processing. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63694-8_3

Download citation

Publish with us

Policies and ethics