Skip to main content

Obesity and Endometrial Cancer: Mouse Models for Preclinical Prevention Studies

  • Chapter
  • First Online:
Focus on Gynecologic Malignancies

Part of the book series: Energy Balance and Cancer ((EBAC,volume 13))

  • 603 Accesses

Abstract

Endometrial cancer risk is more strongly associated with obesity than any other cancer type and it is estimated that well over half of endometrial cancer cases in the US are attributable to being overweight and obese. The evaluation of new therapeutic regimens for the prevention and treatment of human endometrial cancer patients is dependent on the development of relevant preclinical models. This chapter will examine the animal models available for endometrial cancer studies in the lab, with a focus on mouse models. Mice and other rodents represent the front line for early preclinical studies in cancer research. We will discuss specific mouse models of endometrial cancer and will further present techniques that can be used to study the role of diet, obesity, and exercise on the normal endometrium and on the pathogenesis of endometrial cancer in the lab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friel AM, Growdon WB, McCann CK, Olawaiye AB, Munro EG, Schorge JO, Castrillon DH, Broaddus RR, Rueda BR. Mouse models of uterine corpus tumors: clinical significance and utility. Front Biosci (Elite Ed). 2010;2:882–905.

    Google Scholar 

  2. Vollmer G. Endometrial cancer: experimental models useful for studies on molecular aspects of endometrial cancer and carcinogenesis. Endocr Relat Cancer. 2003;10:23–42.

    Article  CAS  PubMed  Google Scholar 

  3. Almind K, Kahn CR. Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice. Diabetes. 2004;53:3274–85.

    Article  CAS  PubMed  Google Scholar 

  4. Brockmann GA, Bevova MR. Using mouse models to dissect the genetics of obesity. Trends Genet. 2002;18:367–76.

    Article  CAS  PubMed  Google Scholar 

  5. Fellmann L, Nascimento AR, Tibirica E, Bousquet P. Murine models for pharmacological studies of the metabolic syndrome. Pharmacol Ther. 2013;137:331–40.

    Article  CAS  PubMed  Google Scholar 

  6. Reed DR, Bachmanov AA, Tordoff MG. Forty mouse strain survey of body composition. Physiol Behav. 2007;91:593–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jung AP, Curtis TS, Turner MJ, Lightfoot JT. Physical activity and food consumption in high- and low-active inbred mouse strains. Med Sci Sports Exerc. 2010;42:1826–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kilikevicius A, Venckunas T, Zelniene R, Carroll AM, Lionikaite S, Ratkevicius A, Lionikas A. Divergent physiological characteristics and responses to endurance training among inbred mouse strains. Scand J Med Sci Sports. 2013;23:657–68.

    CAS  PubMed  Google Scholar 

  9. Lerman I, Harrison BC, Freeman K, Hewett TE, Allen DL, Robbins J, Leinwand LA. Genetic variability in forced and voluntary endurance exercise performance in seven inbred mouse strains. J Appl Physiol (1985). 2002;92:2245–55.

    Article  Google Scholar 

  10. Massett MP, Berk BC. Strain-dependent differences in responses to exercise training in inbred and hybrid mice. Am J Physiol Regul Integr Comp Physiol. 2005;288:R1006–13.

    Article  CAS  PubMed  Google Scholar 

  11. Dakin RS, Walker BR, Seckl JR, Hadoke PW, Drake AJ. Estrogens protect male mice from obesity complications and influence glucocorticoid metabolism. Int J Obes. 2015;39:1539–47.

    CAS  Google Scholar 

  12. Griffin C, Lanzetta N, Eter L, Singer K. Sexually dimorphic myeloid inflammatory and metabolic responses to diet-induced obesity. Am J Physiol Regul Integr Comp Physiol. 2016;311:R211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Belizario JE. Immunodeficient mouse models: an overview. Open Immunol J. 2009;2:79–85.

    Article  CAS  Google Scholar 

  14. Cabrera S, Llaurado M, Castellvi J, Fernandez Y, Alameda F, Colas E, Ruiz A, Doll A, Schwartz S Jr, Carreras R, et al. Generation and characterization of orthotopic murine models for endometrial cancer. Clin Exp Metastasis. 2012;29:217–27.

    Article  CAS  PubMed  Google Scholar 

  15. Haldorsen IS, Popa M, Fonnes T, Brekke N, Kopperud R, Visser NC, Rygh CB, Pavlin T, Salvesen HB, McCormack E, et al. Multimodal imaging of orthotopic mouse model of endometrial carcinoma. PLoS One. 2015;10:e0135220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ruggeri BA, Camp F, Miknyoczki S. Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem Pharmacol. 2014;87:150–61.

    Article  CAS  PubMed  Google Scholar 

  17. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9:338–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iwadate R, Inoue J, Tsuda H, Takano M, Furuya K, Hirasawa A, Aoki D, Inazawa J. High expression of p62 protein is associated with poor prognosis and aggressive phenotypes in endometrial cancer. Am J Pathol. 2015;185:2523–33.

    Article  CAS  PubMed  Google Scholar 

  19. Lee JW, Stone RL, Lee SJ, Nam EJ, Roh JW, Nick AM, Han HD, Shahzad MM, Kim HS, Mangala LS, et al. EphA2 targeted chemotherapy using an antibody drug conjugate in endometrial carcinoma. Clin Cancer Res. 2010;16:2562–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Theisen ER, Gajiwala S, Bearss J, Sorna V, Sharma S, Janat-Amsbury M. Reversible inhibition of lysine specific demethylase 1 is a novel anti-tumor strategy for poorly differentiated endometrial carcinoma. BMC Cancer. 2014;14:752.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Morton JJ, Bird G, Refaeli Y, Jimeno A. Humanized mouse xenograft models: narrowing the tumor-microenvironment gap. Cancer Res. 2016;76(21):6153–8.

    Article  CAS  PubMed  Google Scholar 

  22. Freese KE, Kokai L, Edwards RP, Philips BJ, Sheikh MA, Kelley J, Comerci J, Marra KG, Rubin JP, Linkov F. Adipose-derived stems cells and their role in human cancer development, growth, progression, and metastasis: a systematic review. Cancer Res. 2015;75:1161–8.

    Article  CAS  PubMed  Google Scholar 

  23. Linkov F, Kokai L, Edwards R, Sheikh MA, Freese KE, Marra KG, Rubin JP. The role of adipose-derived stem cells in endometrial cancer proliferation. Scand J Clin Lab Invest Suppl. 2014;244:54–8. discussion 57–8

    Article  PubMed  CAS  Google Scholar 

  24. Klopp AH, Zhang Y, Solley T, Amaya-Manzanares F, Marini F, Andreeff M, Debeb B, Woodward W, Schmandt R, Broaddus R, et al. Omental adipose tissue-derived stromal cells promote vascularization and growth of endometrial tumors. Clin Cancer Res. 2012;18:771–82.

    Article  CAS  PubMed  Google Scholar 

  25. Goh J, Endicott E, Ladiges WC. Pre-tumor exercise decreases breast cancer in old mice in a distance-dependent manner. Am J Cancer Res. 2014;4:378–84.

    PubMed  PubMed Central  Google Scholar 

  26. Welsch MA, Cohen LA, Welsch CW. Inhibition of growth of human breast carcinoma xenografts by energy expenditure via voluntary exercise in athymic mice fed a high-fat diet. Nutr Cancer. 1995;23:309–18.

    Article  CAS  PubMed  Google Scholar 

  27. Higgins KA, Park D, Lee GY, Curran WJ, Deng X. Exercise-induced lung cancer regression: mechanistic findings from a mouse model. Cancer. 2014;120:3302–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pedersen L, Idorn M, Olofsson GH, Lauenborg B, Nookaew I, Hansen RH, Johannesen HH, Becker JC, Pedersen KS, Dethlefsen C, et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab. 2016;23:554–62.

    Article  CAS  PubMed  Google Scholar 

  29. Zheng X, Cui XX, Huang MT, Liu Y, Shih WJ, Lin Y, Lu YP, Wagner GC, Conney AH. Inhibitory effect of voluntary running wheel exercise on the growth of human pancreatic Panc-1 and prostate PC-3 xenograft tumors in immunodeficient mice. Oncol Rep. 2008;19:1583–8.

    PubMed  PubMed Central  Google Scholar 

  30. Stemmer K, Kotzbeck P, Zani F, Bauer M, Neff C, Muller TD, Pfluger PT, Seeley RJ, Divanovic S. Thermoneutral housing is a critical factor for immune function and diet-induced obesity in C57BL/6 nude mice. Int J Obes. 2015;39:791–7.

    Article  CAS  Google Scholar 

  31. Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420:520–62.

    Article  CAS  Google Scholar 

  32. Fontaine DA, Davis DB. Attention to background strain is essential for metabolic research: C57BL/6 and the international knockout mouse consortium. Diabetes. 2016;65:25–33.

    Article  CAS  PubMed  Google Scholar 

  33. Heydemann A. An overview of murine high fat diet as a model for type 2 diabetes mellitus. J Diabetes Res. 2016;2016:2902351.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lin S, Thomas TC, Storlien LH, Huang XF. Development of high fat diet-induced obesity and leptin resistance in C57Bl/6J mice. Int J Obes Relat Metab Disord. 2000;24:639–46.

    Article  CAS  PubMed  Google Scholar 

  35. Montgomery MK, Hallahan NL, Brown SH, Liu M, Mitchell TW, Cooney GJ, Turner N. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia. 2013;56:1129–39.

    Article  CAS  PubMed  Google Scholar 

  36. Wu Y, Wu T, Wu J, Zhao L, Li Q, Varghese Z, Moorhead JF, Powis SH, Chen Y, Ruan XZ. Chronic inflammation exacerbates glucose metabolism disorders in C57BL/6J mice fed with high-fat diet. J Endocrinol. 2013;219:195–204.

    Article  CAS  PubMed  Google Scholar 

  37. Montgomery MK, Fiveash CE, Braude JP, Osborne B, Brown SH, Mitchell TW, Turner N. Disparate metabolic response to fructose feeding between different mouse strains. Sci Rep. 2015;5:18474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alexander J, Chang GQ, Dourmashkin JT, Leibowitz SF. Distinct phenotypes of obesity-prone AKR/J, DBA2J and C57BL/6J mice compared to control strains. Int J Obes. 2006;30:50–9.

    Article  CAS  Google Scholar 

  39. Wang CY, Liao JK. A mouse model of diet-induced obesity and insulin resistance. Methods Mol Biol. 2012;821:421–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao M, Ma Y, Liu D. High-fat diet-induced adiposity, adipose inflammation, hepatic steatosis and hyperinsulinemia in outbred CD-1 mice. PLoS One. 2015;10:e0119784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Li Z, Jin H, Oh SY, Ji GE. Anti-obese effects of two Lactobacilli and two Bifidobacteria on ICR mice fed on a high fat diet. Biochem Biophys Res Commun. 2016;480:222–7.

    Article  CAS  PubMed  Google Scholar 

  42. Newbold RR, Jefferson WN, Padilla-Banks E. Long-term adverse effects of neonatal exposure to bisphenol A on the murine female reproductive tract. Reprod Toxicol. 2007;24:253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Niwa K, Murase T, Furui T, Morishita S, Mori H, Tanaka T, Mori H, Tamaya T. Enhancing effects of estrogens on endometrial carcinogenesis initiated by N-methyl-N-nitrosourea in ICR mice. Jpn J Cancer Res. 1993;84:951–5.

    Article  CAS  PubMed  Google Scholar 

  44. Niwa K, Tanaka T, Mori H, Yokoyama Y, Furui T, Mori H, Tamaya T. Rapid induction of endometrial carcinoma in ICR mice treated with N-methyl-N-nitrosourea and 17 beta-estradiol. Jpn J Cancer Res. 1991;82:1391–6.

    Article  CAS  PubMed  Google Scholar 

  45. Gray K, Bullock B, Dickson R, Raszmann K, Walmer D, McLachlan J, Merlino G. Potentiation of diethylstilbestrol-induced alterations in the female mouse reproductive tract by transforming growth factor-alpha transgene expression. Mol Carcinog. 1996;17:163–73.

    Article  CAS  PubMed  Google Scholar 

  46. Newbold RR, Jefferson WN, Padilla-Burgos E, Bullock BC. Uterine carcinoma in mice treated neonatally with tamoxifen. Carcinogenesis. 1997;18:2293–8.

    Article  CAS  PubMed  Google Scholar 

  47. Wordinger RJ, Morrill A. Histology of the adult mouse oviduct and endometrium following a single prenatal exposure to diethylstilbestrol. Virchows Arch B Cell Pathol Incl Mol Pathol. 1985;50:71–9.

    Article  CAS  PubMed  Google Scholar 

  48. Betof AS, Lascola CD, Weitzel D, Landon C, Scarbrough PM, Devi GR, Palmer G, Jones LW, Dewhirst MW. Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise. J Natl Cancer Inst. 2015;107:pii: djv040.

    Article  CAS  Google Scholar 

  49. Sturgeon K, Schadler K, Muthukumaran G, Ding D, Bajulaiye A, Thomas NJ, Ferrari V, Ryeom S, Libonati JR. Concomitant low-dose doxorubicin treatment and exercise. Am J Physiol Regul Integr Comp Physiol. 2014;307:R685–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mills AM, Longacre TA. Endometrial hyperplasia. Semin Diagn Pathol. 2010;27:199–214.

    Article  PubMed  Google Scholar 

  51. Mills AM, Longacre TA. Atypical endometrial hyperplasia and well differentiated endometrioid adenocarcinoma of the uterine corpus. Surg Pathol Clin. 2011;4:149–98.

    Article  PubMed  Google Scholar 

  52. Morice P, Leary A, Creutzberg C, Abu-Rustum N, Darai E. Endometrial cancer. Lancet. 2016;387:1094–108.

    Article  PubMed  Google Scholar 

  53. Sivridis E, Giatromanolaki A. The pathogenesis of endometrial carcinomas at menopause: facts and figures. J Clin Pathol. 2011;64:553–60.

    Article  PubMed  Google Scholar 

  54. Daikoku T, Hirota Y, Tranguch S, Joshi AR, DeMayo FJ, Lydon JP, Ellenson LH, Dey SK. Conditional loss of uterine Pten unfailingly and rapidly induces endometrial cancer in mice. Cancer Res. 2008;68:5619–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, Cordon-Cardo C, Catoretti G, Fisher PE, Parsons R. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A. 1999;96:1563–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stambolic V, Tsao MS, Macpherson D, Suzuki A, Chapman WB, Mak TW. High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/− mice. Cancer Res. 2000;60:3605–11.

    CAS  PubMed  Google Scholar 

  57. Yu W, Cline M, Maxwell LG, Berrigan D, Rodriguez G, Warri A, Hilakivi-Clarke L. Dietary vitamin D exposure prevents obesity-induced increase in endometrial cancer in Pten+/− mice. Cancer Prev Res (Phila). 2010;3:1246–58.

    Article  CAS  Google Scholar 

  58. Iglesias, D.A., Zhang, Q., Celestino, J., Sun, C.C., Yates, M.S., Schmandt, R.E., Lu, K.H. (2017). Lean body weight and metformin are insufficient to prevent endometrial hyperplasia in mice harboring inactivating mutations in PTEN. Oncology 92(2):109-114.

    Google Scholar 

  59. Lydon JP, DeMayo FJ, Conneely OM, O'Malley BW. Reproductive phenotpes of the progesterone receptor null mutant mouse. J Steroid Biochem Mol Biol. 1996;56:67–77.

    Article  CAS  PubMed  Google Scholar 

  60. Jeong JW, Lee HS, Franco HL, Broaddus RR, Taketo MM, Tsai SY, Lydon JP, DeMayo FJ. Beta-catenin mediates glandular formation and dysregulation of beta-catenin induces hyperplasia formation in the murine uterus. Oncogene. 2009;28:31–40.

    Article  CAS  PubMed  Google Scholar 

  61. Kim SS, Cao L, Lim SC, Li C, Wang RH, Xu X, Bachelier R, Deng CX. Hyperplasia and spontaneous tumor development in the gynecologic system in mice lacking the BRCA1-Delta11 isoform. Mol Cell Biol. 2006;26:6983–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jin N, Gilbert JL, Broaddus RR, Demayo FJ, Jeong JW. Generation of a Mig-6 conditional null allele. Genesis. 2007;45:716–21.

    Article  CAS  PubMed  Google Scholar 

  63. Gonzalez G, Mehra S, Wang Y, Akiyama H, Behringer RR. Sox9 overexpression in uterine epithelia induces endometrial gland hyperplasia. Differentiation. 2016;92(4):204–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Contreras CM, Akbay EA, Gallardo TD, Haynie JM, Sharma S, Tagao O, Bardeesy N, Takahashi M, Settleman J, Wong KK, et al. Lkb1 inactivation is sufficient to drive endometrial cancers that are aggressive yet highly responsive to mTOR inhibitor monotherapy. Dis Model Mech. 2010;3:181–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shorning BY, Clarke AR. Energy sensing and cancer: LKB1 function and lessons learnt from Peutz-Jeghers syndrome. Semin Cell Dev Biol. 2016;52:21–9.

    Article  CAS  PubMed  Google Scholar 

  66. Kim TH, Franco HL, Jung SY, Qin J, Broaddus RR, Lydon JP, Jeong JW. The synergistic effect of Mig-6 and Pten ablation on endometrial cancer development and progression. Oncogene. 2010;29:3770–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol Cell Endocrinol. 2015;402:113–9.

    Article  CAS  PubMed  Google Scholar 

  68. Szmuilowicz ED, Stuenkel CA, Seely EW. Influence of menopause on diabetes and diabetes risk. Nat Rev Endocrinol. 2009;5:553–8.

    Article  PubMed  Google Scholar 

  69. Groothuis PG, Dassen HH, Romano A, Punyadeera C. Estrogen and the endometrium: lessons learned from gene expression profiling in rodents and human. Hum Reprod Update. 2007;13:405–17.

    Article  CAS  PubMed  Google Scholar 

  70. Diaz Brinton R. Minireview: translational animal models of human menopause: challenges and emerging opportunities. Endocrinology. 2012;153:3571–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Danilovich N, Ram Sairam M. Recent female mouse models displaying advanced reproductive aging. Exp Gerontol. 2006;41:117–22.

    Article  PubMed  Google Scholar 

  72. Van Kempen TA, Milner TA, Waters EM. Accelerated ovarian failure: a novel, chemically induced animal model of menopause. Brain Res. 2011;1379:176–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Brooks HL, Pollow DP, Hoyer PB. The VCD mouse model of menopause and perimenopause for the study of sex differences in cardiovascular disease and the metabolic syndrome. Physiology (Bethesda). 2016;31:250–7.

    CAS  Google Scholar 

  74. Sairam MR, Danilovich N, Lussier-Cacan S. The FORKO mouse as a genetic model for exploring estrogen replacement therapy. J Reprod Med. 2002;47:412–8.

    PubMed  Google Scholar 

  75. Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutr Res Rev. 2010;23:270–99.

    Article  CAS  PubMed  Google Scholar 

  76. West DB, York B. Dietary fat, genetic predisposition, and obesity: lessons from animal models. Am J Clin Nutr. 1998;67:505S–12S.

    CAS  PubMed  Google Scholar 

  77. Brown NM, Setchell KD. Animal models impacted by phytoestrogens in commercial chow: implications for pathways influenced by hormones. Lab Investig. 2001;81:735–47.

    Article  CAS  PubMed  Google Scholar 

  78. Thigpen JE, Setchell KD, Ahlmark KB, Locklear J, Spahr T, Caviness GF, Goelz MF, Haseman JK, Newbold RR, Forsythe DB. Phytoestrogen content of purified, open- and closed-formula laboratory animal diets. Lab Anim Sci. 1999;49:530–6.

    CAS  PubMed  Google Scholar 

  79. Mezei O, Banz WJ, Steger RW, Peluso MR, Winters TA, Shay N. Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese Zucker rats and murine RAW 264.7 cells. J Nutr. 2003;133:1238–43.

    CAS  PubMed  Google Scholar 

  80. Nickkho-Amiry M, McVey R, Holland C. Peroxisome proliferator-activated receptors modulate proliferation and angiogenesis in human endometrial carcinoma. Mol Cancer Res. 2012;10:441–53.

    Article  CAS  PubMed  Google Scholar 

  81. van der Zee M, Jia Y, Wang Y, Heijmans-Antonissen C, Ewing PC, Franken P, DeMayo FJ, Lydon JP, Burger CW, Fodde R, et al. Alterations in Wnt-beta-catenin and Pten signalling play distinct roles in endometrial cancer initiation and progression. J Pathol. 2013;230:48–58.

    Article  PubMed  CAS  Google Scholar 

  82. Wu W, Celestino J, Milam MR, Schmeler KM, Broaddus RR, Ellenson LH, Lu KH. Primary chemoprevention of endometrial hyperplasia with the peroxisome proliferator-activated receptor gamma agonist rosiglitazone in the PTEN heterozygote murine model. Int J Gynecol Cancer. 2008;18:329–38.

    Article  CAS  PubMed  Google Scholar 

  83. Buettner R, Scholmerich J, Bollheimer LC. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring). 2007;15:798–808.

    Article  CAS  Google Scholar 

  84. Cunha TM, Peterson R, Gobbett TA. Conditions of metabolic syndrome (obesity, insulin resistance, dyslipidemia) altered by varied sources of dietary fat in the C57BL/6 mouse. In: Zuberbuehler C, editor. Society for the study of ingestive behavior: annual meeting 2005. Pittsburgh, PA: SSIB; 2005.

    Google Scholar 

  85. Kregel KC, editor. Resource book or the design of animal exercise protocols. Washington, DC: American Physiological Society; 2006.

    Google Scholar 

  86. Ghosh S, Golbidi S, Werner I, Verchere BC, Laher I. Selecting exercise regimens and strains to modify obesity and diabetes in rodents: an overview. Clin Sci (Lond). 2010;119:57–74.

    Article  Google Scholar 

  87. Pedersen L, Christensen JF, Hojman P. Effects of exercise on tumor physiology and metabolism. Cancer J. 2015;21:111–6.

    Article  CAS  PubMed  Google Scholar 

  88. Seo DY, Lee SR, Kim N, Ko KS, Rhee BD, Han J. Humanized animal exercise model for clinical implication. Pflugers Arch. 2014;466:1673–87.

    Article  CAS  PubMed  Google Scholar 

  89. Fernando P, Bonen A, Hoffman-Goetz L. Predicting submaximal oxygen consumption during treadmill running in mice. Can J Physiol Pharmacol. 1993;71:854–7.

    Article  CAS  PubMed  Google Scholar 

  90. Jones LW, Eves ND, Courneya KS, Chiu BK, Baracos VE, Hanson J, Johnson L, Mackey JR. Effects of exercise training on antitumor efficacy of doxorubicin in MDA-MB-231 breast cancer xenografts. Clin Cancer Res. 2005;11:6695–8.

    Article  CAS  PubMed  Google Scholar 

  91. Dominoni DM, Borniger JC, Nelson RJ. Light at night, clocks and health: from humans to wild organisms. Biol Lett. 2016;12:20160015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Irwin MR. Why sleep is important for health: a psychoneuroimmunology perspective. Annu Rev Psychol. 2015;66:143–72.

    Article  PubMed  Google Scholar 

  93. Reiche EM, Nunes SO, Morimoto HK. Stress, depression, the immune system, and cancer. Lancet Oncol. 2004;5:617–25.

    Article  CAS  PubMed  Google Scholar 

  94. Thaker PH, Sood AK. Neuroendocrine influences on cancer biology. Semin Cancer Biol. 2008;18:164–70.

    Article  CAS  PubMed  Google Scholar 

  95. Knab AM, Bowen RS, Moore-Harrison T, Hamilton AT, Turner MJ, Lightfoot JT. Repeatability of exercise behaviors in mice. Physiol Behav. 2009;98:433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. De Bono JP, Adlam D, Paterson DJ, Channon KM. Novel quantitative phenotypes of exercise training in mouse models. Am J Physiol Regul Integr Comp Physiol. 2006;290:R926–34.

    Article  PubMed  CAS  Google Scholar 

  97. Goh J, Ladiges W. Voluntary wheel running in mice. Curr Protoc Mouse Biol. 2015;5:283–90.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Betof AS, Dewhirst MW, Jones LW. Effects and potential mechanisms of exercise training on cancer progression: a translational perspective. Brain Behav Immun. 2013;30(Suppl):S75–87.

    Article  PubMed  Google Scholar 

  99. Goh J, Tsai J, Bammler TK, Farin FM, Endicott E, Ladiges WC. Exercise training in transgenic mice is associated with attenuation of early breast cancer growth in a dose-dependent manner. PLoS One. 2013;8:e80123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Notta VF, Aguila MB, Mandarim DELCA. High-intensity interval training (swimming) significantly improves the adverse metabolism and comorbidities in diet-induced obese mice. J Sports Med Phys Fitness. 2016;56:655–63.

    Google Scholar 

  101. Wu H, Jin M, Han D, Zhou M, Mei X, Guan Y, Liu C. Protective effects of aerobic swimming training on high-fat diet induced nonalcoholic fatty liver disease: regulation of lipid metabolism via PANDER-AKT pathway. Biochem Biophys Res Commun. 2015;458:862–8.

    Article  CAS  PubMed  Google Scholar 

  102. Zhang QB, Zhang BH, Zhang KZ, Meng XT, Jia QA, Zhang QB, Bu Y, Zhu XD, Ma DN, Ye BG, et al. Moderate swimming suppressed the growth and metastasis of the transplanted liver cancer in mice model: with reference to nervous system. Oncogene. 2016;35:4122–31.

    Article  PubMed  CAS  Google Scholar 

  103. de Kloet ER, Molendijk ML. Coping with the forced swim stressor: towards understanding an adaptive mechanism. Neural Plast. 2016;2016:6503162.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Overstreet DH. Modeling depression in animal models. Methods Mol Biol. 2012;829:125–44.

    Article  CAS  PubMed  Google Scholar 

  105. Pollak DD, Rey CE, Monje FJ. Rodent models in depression research: classical strategies and new directions. Ann Med. 2010;42:252–64.

    Article  PubMed  Google Scholar 

  106. Contarteze RV, Manchado Fde B, Gobatto CA, De Mello MA. Stress biomarkers in rats submitted to swimming and treadmill running exercises. Comp Biochem Physiol A Mol Integr Physiol. 2008;151:415–22.

    Article  PubMed  CAS  Google Scholar 

  107. Cholewa J, Guimaraes-Ferreira L, da Silva Teixeira T, Naimo MA, Zhi X, de Sa RB, Lodetti A, Cardozo MQ, Zanchi NE. Basic models modeling resistance training: an update for basic scientists interested in study skeletal muscle hypertrophy. J Cell Physiol. 2014;229:1148–56.

    Article  CAS  PubMed  Google Scholar 

  108. Lowe DA, Alway SE. Animal models for inducing muscle hypertrophy: are they relevant for clinical applications in humans? J Orthop Sports Phys Ther. 2002;32:36–43.

    Article  PubMed  Google Scholar 

  109. Strickland JC, Smith MA. Animal models of resistance exercise and their application to neuroscience research. J Neurosci Methods. 2016;273:191–200.

    Article  PubMed  Google Scholar 

  110. Mardare C, Kruger K, Liebisch G, Seimetz M, Couturier A, Ringseis R, Wilhelm J, Weissmann N, Eder K, Mooren FC. Endurance and resistance training affect high fat diet-induced increase of ceramides, inflammasome expression, and systemic inflammation in mice. J Diabetes Res. 2016;2016:4536470.

    Article  PubMed  Google Scholar 

  111. Morton GJ, Kaiyala KJ, Fisher JD, Ogimoto K, Schwartz MW, Wisse BE. Identification of a physiological role for leptin in the regulation of ambulatory activity and wheel running in mice. Am J Physiol Endocrinol Metab. 2011;300:E392–401.

    Article  CAS  PubMed  Google Scholar 

  112. Lee MC, Inoue K, Okamoto M, Liu YF, Matsui T, Yook JS, Soya H. Voluntary resistance running induces increased hippocampal neurogenesis in rats comparable to load-free running. Neurosci Lett. 2013;537:6–10.

    Article  CAS  PubMed  Google Scholar 

  113. Khamoui AV, Park BS, Kim DH, Yeh MC, Oh SL, Elam ML, Jo E, Arjmandi BH, Salazar G, Grant SC, et al. Aerobic and resistance training dependent skeletal muscle plasticity in the colon-26 murine model of cancer cachexia. Metabolism. 2016;65:685–98.

    Article  CAS  PubMed  Google Scholar 

  114. Bartling B, Al-Robaiy S, Lehnich H, Binder L, Hiebl B, Simm A. Sex-related differences in the wheel-running activity of mice decline with increasing age. Exp Gerontol. 2017;87(Pt B):139–47.

    Article  PubMed  Google Scholar 

  115. Kullberg J, Brandberg J, Angelhed JE, Frimmel H, Bergelin E, Strid L, Ahlstrom H, Johansson L, Lonn L. Whole-body adipose tissue analysis: comparison of MRI, CT and dual energy X-ray absorptiometry. Br J Radiol. 2009;82:123–30.

    Article  CAS  PubMed  Google Scholar 

  116. Naboush A, Hamdy O. Measuring visceral and hepatic fat in clinical practice and clinical research. Endocr Pract. 2013;19:587–9.

    Article  PubMed  Google Scholar 

  117. Brommage R. Validation and calibration of DEXA body composition in mice. Am J Physiol Endocrinol Metab. 2003;285:E454–9.

    Article  CAS  PubMed  Google Scholar 

  118. Chen W, Wilson JL, Khaksari M, Cowley MA, Enriori PJ. Abdominal fat analyzed by DEXA scan reflects visceral body fat and improves the phenotype description and the assessment of metabolic risk in mice. Am J Phys Endocrinol Metab. 2012;303:E635–43.

    Article  CAS  Google Scholar 

  119. Judex S, Luu YK, Ozcivici E, Adler B, Lublinsky S, Rubin CT. Quantification of adiposity in small rodents using micro-CT. Methods. 2010;50:14–9.

    Article  CAS  PubMed  Google Scholar 

  120. Luu YK, Lublinsky S, Ozcivici E, Capilla E, Pessin JE, Rubin CT, Judex S. In vivo quantification of subcutaneous and visceral adiposity by micro-computed tomography in a small animal model. Med Eng Phys. 2009;31:34–41.

    Article  CAS  PubMed  Google Scholar 

  121. Calderan L, Marzola P, Nicolato E, Fabene PF, Milanese C, Bernardi P, Giordano A, Cinti S, Sbarbati A. In vivo phenotyping of the ob/ob mouse by magnetic resonance imaging and 1H-magnetic resonance spectroscopy. Obesity (Silver Spring). 2006;14:405–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemarie E. Schmandt Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Schmandt, R.E., Naff, K.A. (2018). Obesity and Endometrial Cancer: Mouse Models for Preclinical Prevention Studies. In: Berger, N., Klopp, A., Lu, K. (eds) Focus on Gynecologic Malignancies. Energy Balance and Cancer, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-63483-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63483-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63482-1

  • Online ISBN: 978-3-319-63483-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics