Skip to main content

Physical Activity as a Risk Factor for Ovarian Cancer

  • Chapter
  • First Online:
Focus on Gynecologic Malignancies

Part of the book series: Energy Balance and Cancer ((EBAC,volume 13))

Abstract

Ovarian cancer is a highly fatal gynecologic malignancy that is the fifth leading cause of cancer death among women in the United States. Most known risk factors are not easily modifiable, necessitating examination of modifiable lifestyle factors, such as physical activity and sedentary behavior, with risk. While putative biologic mechanisms of action, such as reduced adiposity, sex hormones, and inflammation, suggest that physical activity should lower ovarian cancer risk, results from epidemiologic studies have been less clear. In general, case-control studies have shown an inverse association, however potential recall bias and reverse causation may play a role in this relationship. Conversely, prospective studies generally have observed either a positive association or null results. This may be due to influences of moderate to vigorous activity on increasing ovulatory function compared to physical inactivity. Little research is available regarding associations with survival or the role of sedentary behavior. Clearly, additional research in cohort-based consortia with harmonized physical activity data is needed to further understand the complex role of physical activity with ovarian cancer risk and survival, overall and by tumor subtype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee IM, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29.

    Article  PubMed  PubMed Central  Google Scholar 

  2. WHO (2016) Global strategy on diet, physical activity and health. http://www.who.int/dietphysicalactivity/factsheet_adults/en/.

  3. Keum N, et al. Leisure-time physical activity and endometrial cancer risk: dose-response meta-analysis of epidemiological studies. Int J Cancer. 2014;135(3):682–94.

    Article  CAS  PubMed  Google Scholar 

  4. Schmid D, et al. A systematic review and meta-analysis of physical activity and endometrial cancer risk. Eur J Epidemiol. 2015;30(5):397–412.

    Article  CAS  PubMed  Google Scholar 

  5. National Cancer Institute (2009) Physical activity and cancer. https://www.cancer.gov/about-cancer/causes-prevention/risk/obesity/physical-activity-fact-sheet.

  6. Torre LA, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    Article  PubMed  Google Scholar 

  7. American Cancer Society. Cancer facts and figures 2013. Atlanta: American Cancer Society; 2013.

    Google Scholar 

  8. Buys SS, et al. Effect of screening on ovarian cancer mortality: the prostate, lung, colorectal and ovarian (PLCO) cancer screening randomized controlled trial. JAMA. 2011;305(22):2295–303.

    Article  CAS  PubMed  Google Scholar 

  9. Jacobs IJ, et al. Ovarian cancer screening and mortality in the UK collaborative trial of ovarian cancer screening (UKCTOCS): a randomised controlled trial. Lancet. 2016;387(10022):945–56.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Permuth-Wey J, Sellers TA. Epidemiology of ovarian cancer. Methods Mol Biol. 2009;472:413–37.

    Article  PubMed  Google Scholar 

  11. Wentzensen N, et al. Ovarian cancer risk factors by histologic subtype: an analysis from the ovarian cancer cohort Consortium. J Clin Oncol. 2016;34(24):2888–98.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Merritt MA, et al. Reproductive characteristics in relation to ovarian cancer risk by histologic pathways. Hum Reprod. 2013;28(5):1406–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Risch HA, et al. Differences in risk factors for epithelial ovarian cancer by histologic type. Results of a case-control study. Am J Epidemiol. 1996;144(4):363–72.

    Article  CAS  PubMed  Google Scholar 

  14. Lee IM, et al. Physical activity and weight gain prevention. JAMA. 2010;303(12):1173–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mozaffarian D, et al. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med. 2011;364(25):2392–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tian Y, et al. BMI, leisure-time physical activity, and physical fitness in adults in China: results from a series of national surveys, 2000-14. Lancet Diabetes Endocrinol. 2016;4(6):487–97.

    Article  PubMed  Google Scholar 

  17. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4(8):579–91.

    Article  CAS  PubMed  Google Scholar 

  18. Renehan AG, Zwahlen M, Egger M. Adiposity and cancer risk: new mechanistic insights from epidemiology. Nat Rev Cancer. 2015;15(8):484–98.

    Article  CAS  PubMed  Google Scholar 

  19. McTiernan A. Mechanisms linking physical activity with cancer. Nat Rev Cancer. 2008;8(3):205–11.

    Article  CAS  PubMed  Google Scholar 

  20. Nieman DC, Pedersen BK. Exercise and immune function. Recent developments. Sports Med. 1999;27(2):73–80.

    Article  CAS  PubMed  Google Scholar 

  21. Pedersen BK, Ullum H. NK cell response to physical activity: possible mechanisms of action. Med Sci Sports Exerc. 1994;26(2):140–6.

    Article  CAS  PubMed  Google Scholar 

  22. Shephard RJ, Shek PN. Effects of exercise and training on natural killer cell counts and cytolytic activity: a meta-analysis. Sports Med. 1999;28(3):177–95.

    Article  CAS  PubMed  Google Scholar 

  23. Jakobisiak M, Lasek W, Golab J. Natural mechanisms protecting against cancer. Immunol Lett. 2003;90(2–3):103–22.

    Article  CAS  PubMed  Google Scholar 

  24. Tworoger SS, Huang T. Obesity and ovarian cancer. Recent Results Cancer Res. 2016;208:155–76.

    Article  CAS  PubMed  Google Scholar 

  25. McTiernan A, et al. Relation of BMI and physical activity to sex hormones in postmenopausal women. Obesity (Silver Spring). 2006;14(9):1662–77.

    Article  CAS  Google Scholar 

  26. McTiernan A, et al. Effect of exercise on serum estrogens in postmenopausal women: a 12-month randomized clinical trial. Cancer Res. 2004;64(8):2923–8.

    Article  CAS  PubMed  Google Scholar 

  27. Chan MF, et al. Usual physical activity and endogenous sex hormones in postmenopausal women: the European prospective investigation into cancer-norfolk population study. Cancer Epidemiol Biomark Prev. 2007;16(5):900–5.

    Article  CAS  Google Scholar 

  28. Verkasalo PK, et al. Circulating levels of sex hormones and their relation to risk factors for breast cancer: a cross-sectional study in 1092 pre- and postmenopausal women (United Kingdom). Cancer Causes Control. 2001;12(1):47–59.

    Article  CAS  PubMed  Google Scholar 

  29. Ennour-Idrissi K, Maunsell E, Diorio C. Effect of physical activity on sex hormones in women: a systematic review and meta-analysis of randomized controlled trials. Breast Cancer Res. 2015;17(1):139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cunat S, Hoffmann P, Pujol P. Estrogens and epithelial ovarian cancer. Gynecol Oncol. 2004;94(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  31. Lacey JV Jr, et al. Menopausal hormone replacement therapy and risk of ovarian cancer. JAMA. 2002;288(3):334–41.

    Article  CAS  PubMed  Google Scholar 

  32. Beral V, et al. Ovarian cancer and hormone replacement therapy in the Million Women study. Lancet. 2007;369(9574):1703–10.

    Article  CAS  PubMed  Google Scholar 

  33. Beral V, et al. Menopausal hormone use and ovarian cancer risk: individual participant meta-analysis of 52 epidemiological studies. Lancet. 2015;385(9980):1835–42.

    Article  CAS  PubMed  Google Scholar 

  34. Helzlsouer KJ, et al. Serum gonadotropins and steroid hormones and the development of ovarian cancer. JAMA. 1995;274(24):1926–30.

    Article  CAS  PubMed  Google Scholar 

  35. Schock H, et al. Early pregnancy sex steroids and maternal risk of epithelial ovarian cancer. Endocr Relat Cancer. 2014;21(6):831–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lukanova A, et al. Circulating levels of sex steroid hormones and risk of ovarian cancer. Int J Cancer. 2003;104(5):636–42.

    Article  CAS  PubMed  Google Scholar 

  37. Hecht JL, et al. Relationship between epidemiologic risk factors and hormone receptor expression in ovarian cancer: results from the Nurses’ Health study. Cancer Epidemiol Biomark Prev. 2009;18(5):1624–30.

    Article  CAS  Google Scholar 

  38. Barry JA, Azizia MM, Hardiman PJ. Risk of endometrial, ovarian and breast cancer in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2014;20(5):748–58.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rinaldi S, et al. Endogenous androgens and risk of epithelial ovarian cancer: results from the European prospective investigation into cancer and nutrition (EPIC). Cancer Epidemiol Biomark Prev. 2007;16(1):23–9.

    Article  CAS  Google Scholar 

  40. Tworoger SS, et al. Plasma androgen concentrations and risk of incident ovarian cancer. Am J Epidemiol. 2008;167(2):211–8.

    Article  PubMed  Google Scholar 

  41. Olsen CM, et al. Epithelial ovarian cancer: testing the ‘androgens hypothesis’. Endocr Relat Cancer. 2008;15(4):1061–8.

    Article  CAS  PubMed  Google Scholar 

  42. Ose J, et al. Endogenous androgens and risk of epithelial invasive ovarian cancer by tumor characteristics in the European prospective investigation into cancer and nutrition. Int J Cancer. 2015;136(2):399–410.

    Article  CAS  PubMed  Google Scholar 

  43. McSorley MA, et al. C-reactive protein concentrations and subsequent ovarian cancer risk. Obstet Gynecol. 2007;109(4):933–41.

    Article  CAS  PubMed  Google Scholar 

  44. Ose J, et al. Inflammatory markers and risk of epithelial ovarian cancer by tumor subtypes: the EPIC cohort. Cancer Epidemiol Biomarkers Prev. 2015;24(6):951–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Poole EM, et al. A prospective study of circulating C-reactive protein, interleukin-6, and tumor necrosis factor alpha receptor 2 levels and risk of ovarian cancer. Am J Epidemiol. 2013;178(8):1256–64.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zeng F, et al. Inflammatory markers of CRP, IL6, TNFalpha, and soluble TNFR2 and the risk of ovarian cancer: a meta-analysis of prospective studies. Cancer Epidemiol Biomark Prev. 2016;25(8):1231–9.

    Article  CAS  Google Scholar 

  47. Maccio A, et al. High serum levels of soluble IL-2 receptor, cytokines, and C reactive protein correlate with impairment of T cell response in patients with advanced epithelial ovarian cancer. Gynecol Oncol. 1998;69(3):248–52.

    Article  CAS  PubMed  Google Scholar 

  48. Maccio A, Madeddu C. Inflammation and ovarian cancer. Cytokine. 2012;58(2):133–47.

    Article  CAS  PubMed  Google Scholar 

  49. Rzymski P, et al. Serum tumor necrosis factor alpha receptors p55/p75 ratio and ovarian cancer detection. Int J Gynaecol Obstet. 2005;88(3):292–8.

    Article  CAS  PubMed  Google Scholar 

  50. Lane D, et al. Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer. 2011;11:210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lo CW, et al. IL-6 trans-signaling in formation and progression of malignant ascites in ovarian cancer. Cancer Res. 2011;71(2):424–34.

    Article  CAS  PubMed  Google Scholar 

  52. Mayer-Davis EJ, et al. Intensity and amount of physical activity in relation to insulin sensitivity: the insulin resistance atherosclerosis study. JAMA. 1998;279(9):669–74.

    Article  CAS  PubMed  Google Scholar 

  53. Assah FK, et al. The association of intensity and overall level of physical activity energy expenditure with a marker of insulin resistance. Diabetologia. 2008;51(8):1399–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Adler AI, et al. Is diabetes mellitus a risk factor for ovarian cancer? A case-control study in Utah and Washington (United States). Cancer Causes Control. 1996;7(4):475–8.

    Article  CAS  PubMed  Google Scholar 

  55. Inoue M, et al. Diabetes mellitus and the risk of cancer: results from a large-scale population-based cohort study in Japan. Arch Intern Med. 2006;166(17):1871–7.

    Article  PubMed  Google Scholar 

  56. Gapstur SM, et al. Type II diabetes mellitus and the incidence of epithelial ovarian cancer in the cancer prevention study-II nutrition cohort. Cancer Epidemiol Biomark Prev. 2012;21(11):2000–5.

    Article  Google Scholar 

  57. Swerdlow AJ, et al. Cancer incidence and mortality in patients with insulin-treated diabetes: a UK cohort study. Br J Cancer. 2005;92(11):2070–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Resnicoff M, et al. Insulin-like growth factor-1 and its receptor mediate the autocrine proliferation of human ovarian carcinoma cell lines. Lab Investig. 1993;69(6):756–60.

    CAS  PubMed  Google Scholar 

  59. Ji QS, et al. A novel, potent, and selective insulin-like growth factor-I receptor kinase inhibitor blocks insulin-like growth factor-I receptor signaling in vitro and inhibits insulin-like growth factor-I receptor dependent tumor growth in vivo. Mol Cancer Ther. 2007;6(8):2158–67.

    Article  CAS  PubMed  Google Scholar 

  60. Lukanova A, et al. Circulating levels of insulin-like growth factor-I and risk of ovarian cancer. Int J Cancer. 2002;101(6):549–54.

    Article  CAS  PubMed  Google Scholar 

  61. Peeters PH, et al. Serum IGF-I, its major binding protein (IGFBP-3) and epithelial ovarian cancer risk: the European prospective investigation into cancer and nutrition (EPIC). Endocr Relat Cancer. 2007;14(1):81–90.

    Article  CAS  PubMed  Google Scholar 

  62. Tworoger SS, et al. Insulin-like growth factors and ovarian cancer risk: a nested case-control study in three cohorts. Cancer Epidemiol Biomark Prev. 2007;16(8):1691–5.

    Article  CAS  Google Scholar 

  63. Schock H, et al. Early pregnancy IGF-I and placental GH and risk of epithelial ovarian cancer: a nested case-control study. Int J Cancer. 2015;137(2):439–47.

    Article  CAS  PubMed  Google Scholar 

  64. Ose J, et al. Insulin-like growth factor I and risk of epithelial invasive ovarian cancer by tumour characteristics: results from the EPIC cohort. Br J Cancer. 2015;112(1):162–6.

    Article  CAS  PubMed  Google Scholar 

  65. Dal Maso L, et al. Association between components of the insulin-like growth factor system and epithelial ovarian cancer risk. Oncology. 2004;67(3–4):225–30.

    Article  CAS  PubMed  Google Scholar 

  66. Wang Q, et al. Association of circulating insulin-like growth factor 1 and insulin-like growth factor binding protein 3 with the risk of ovarian cancer: a systematic review and meta-analysis. Mol Clin Oncol. 2015;3(3):623–8.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Casagrande J, et al. Incessant ovulation” and ovarian cancer. Lancet. 1979;314(8135):170–3.

    Article  Google Scholar 

  68. Tung K-H, et al. Effect of anovulation factors on pre-and postmenopausal ovarian cancer risk: revisiting the incessant ovulation hypothesis. Am J Epidemiol. 2005;161(4):321–9.

    Article  PubMed  Google Scholar 

  69. Risch HA. Hormonal etiology of epithelial ovarian cancer, with a hypothesis concerning the role of androgens and progesterone. J Natl Cancer Inst. 1998;90(23):1774–86.

    Article  CAS  PubMed  Google Scholar 

  70. Ghahremani M, Foghi A, Dorrington JH. Etiology of ovarian cancer: a proposed mechanism. Med Hypotheses. 1999;52(1):23–6.

    Article  CAS  PubMed  Google Scholar 

  71. Bullen BA, et al. Induction of menstrual disorders by strenuous exercise in untrained women. N Engl J Med. 1985;312(21):1349–53.

    Article  CAS  PubMed  Google Scholar 

  72. Russell JB, et al. The relationship of exercise to anovulatory cycles in female athletes: hormonal and physical characteristics. Obstet Gynecol. 1984;63(4):452–6.

    CAS  PubMed  Google Scholar 

  73. Shangold M, et al. The relationship between long-distance running, plasma progesterone, and luteal phase length. Fertil Steril. 1979;31(2):130–3.

    Article  CAS  PubMed  Google Scholar 

  74. Cramer DW, et al. The relation of endometriosis to menstrual characteristics, smoking, and exercise. JAMA. 1986;255(14):1904–8.

    Article  CAS  PubMed  Google Scholar 

  75. Dhillon PK, Holt VL. Recreational physical activity and endometrioma risk. Am J Epidemiol. 2003;158(2):156–64.

    Article  PubMed  Google Scholar 

  76. Vitonis AF, et al. Adult physical activity and endometriosis risk. Epidemiology. 2010;21(1):16–23.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Pearce CL, et al. Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case-control studies. Lancet Oncol. 2012;13(4):385–94.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mogensen JB, et al. Endometriosis and risks for ovarian, endometrial and breast cancers: a nationwide cohort study. Gynecol Oncol. 2016;143(1):87–92.

    Article  PubMed  Google Scholar 

  79. Cottreau CM, Ness RB, Kriska AM. Physical activity and reduced risk of ovarian cancer. Obstet Gynecol. 2000;96(4):609–14.

    CAS  PubMed  Google Scholar 

  80. Freedman DM, Dosemeci M, McGlynn K. Sunlight and mortality from breast, ovarian, colon, prostate, and non-melanoma skin cancer: a composite death certificate based case-control study. Occup Environ Med. 2002;59(4):257–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Olsen CM, et al. Recreational physical activity and epithelial ovarian cancer: a case-control study, systematic review, and meta-analysis. Cancer Epidemiol Biomark Prev. 2007;16(11):2321–30.

    Article  Google Scholar 

  82. Pan SY, Ugnat AM, Mao Y. Physical activity and the risk of ovarian cancer: a case-control study in Canada. Int J Cancer. 2005;117(2):300–7.

    Article  CAS  PubMed  Google Scholar 

  83. Riman T, et al. Some life-style factors and the risk of invasive epithelial ovarian cancer in Swedish women. Eur J Epidemiol. 2004;19(11):1011–9.

    Article  PubMed  Google Scholar 

  84. Tavani A, et al. Physical activity and risk of ovarian cancer: an Italian case-control study. Int J Cancer. 2001;91(3):407–11.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang M, Lee AH, Binns CW. Physical activity and epithelial ovarian cancer risk: a case-control study in China. Int J Cancer. 2003;105(6):838–43.

    Article  CAS  PubMed  Google Scholar 

  86. Zheng W, et al. Occupational physical activity and the incidence of cancer of the breast, corpus uteri, and ovary in Shanghai. Cancer. 1993;71(11):3620–4.

    Article  CAS  PubMed  Google Scholar 

  87. Bertone ER, et al. Recreational physical activity and ovarian cancer in a population-based case-control study. Int J Cancer. 2002;99(3):431–6.

    Article  CAS  PubMed  Google Scholar 

  88. Chiaffarino F, et al. Risk factors for ovarian cancer histotypes. Eur J Cancer. 2007;43(7):1208–13.

    Article  PubMed  Google Scholar 

  89. Dosemeci M, et al. Occupational physical activity, socioeconomic status, and risks of 15 cancer sites in Turkey. Cancer Causes Control. 1993;4(4):313–21.

    Article  CAS  PubMed  Google Scholar 

  90. Moorman PG, et al. Recreational physical activity and ovarian cancer risk and survival. Ann Epidemiol. 2011;21(3):178–87.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Carnide N, Kreiger N, Cotterchio M. Association between frequency and intensity of recreational physical activity and epithelial ovarian cancer risk by age period. Eur J Cancer Prev. 2009;18(4):322–30.

    Article  PubMed  Google Scholar 

  92. Abbott SE, et al. Recreational physical activity and ovarian cancer risk in African American women. Cancer Med. 2016;5(6):1319–27.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhong S, et al. Nonoccupational physical activity and risk of ovarian cancer: a meta-analysis. Tumour Biol. 2014;35(11):11065–73.

    Article  PubMed  Google Scholar 

  94. Cannioto R, et al. Chronic recreational physical inactivity and epithelial ovarian cancer risk: evidence from the ovarian cancer Association Consortium. Cancer Epidemiol Biomark Prev. 2016;25(7):1114–24.

    Article  Google Scholar 

  95. Adams SA, et al. The effect of social desirability and social approval on self-reports of physical activity. Am J Epidemiol. 2005;161(4):389–98.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rzewnicki R, Vanden Auweele Y, De Bourdeaudhuij I. Addressing overreporting on the International Physical Activity Questionnaire (IPAQ) telephone survey with a population sample. Public Health Nutr. 2003;6(3):299–305.

    Article  PubMed  Google Scholar 

  97. Mink PJ, et al. Physical activity, waist-to-hip ratio, and other risk factors for ovarian cancer: a follow-up study of older women. Epidemiology. 1996;7(1):38–45.

    Article  CAS  PubMed  Google Scholar 

  98. Bertone ER, et al. Prospective study of recreational physical activity and ovarian cancer. J Natl Cancer Inst. 2001;93(12):942–8.

    Article  CAS  PubMed  Google Scholar 

  99. Anderson JP, Ross JA, Folsom AR. Anthropometric variables, physical activity, and incidence of ovarian cancer: the Iowa Women’s Health study. Cancer. 2004;100(7):1515–21.

    Article  PubMed  Google Scholar 

  100. Hannan LM, et al. Physical activity and risk of ovarian cancer: a prospective cohort study in the United States. Cancer Epidemiol Biomark Prev. 2004;13(5):765–70.

    Google Scholar 

  101. Schnohr P, et al. Physical activity in leisure-time and risk of cancer: 14-year follow-up of 28,000 Danish men and women. Scand J Public Health. 2005;33(4):244–9.

    Article  PubMed  Google Scholar 

  102. Biesma RG, et al. Physical activity and risk of ovarian cancer: results from the Netherlands Cohort study (The Netherlands). Cancer Causes Control. 2006;17(1):109–15.

    Article  PubMed  Google Scholar 

  103. Patel AV, et al. Recreational physical activity and sedentary behavior in relation to ovarian cancer risk in a large cohort of US women. Am J Epidemiol. 2006;163(8):709–16.

    Article  PubMed  Google Scholar 

  104. Soll-Johanning H, Bach E. Occupational exposure to air pollution and cancer risk among Danish urban mail carriers. Int Arch Occup Environ Health. 2004;77(5):351–6.

    Article  CAS  PubMed  Google Scholar 

  105. Weiderpass E, et al. Prospective study of physical activity in different periods of life and the risk of ovarian cancer. Int J Cancer. 2006;118(12):3153–60.

    Article  CAS  PubMed  Google Scholar 

  106. Leitzmann MF, et al. Prospective study of physical activity and the risk of ovarian cancer. Cancer Causes Control. 2009;20(5):765–73.

    Article  PubMed  Google Scholar 

  107. Xiao Q, et al. Physical activity in different periods of life, sedentary behavior, and the risk of ovarian cancer in the NIH-AARP diet and health study. Cancer Epidemiol Biomark Prev. 2013;22(11):2000–8.

    Article  Google Scholar 

  108. Hildebrand JS, et al. Moderate-to-vigorous physical activity and leisure-time sitting in relation to ovarian cancer risk in a large prospective US cohort. Cancer Causes Control. 2015;26(11):1691–7.

    Article  PubMed  Google Scholar 

  109. Huang T, et al. A prospective study of leisure-time physical activity and risk of incident epithelial ovarian cancer: impact by menopausal status. Int J Cancer. 2016;138(4):843–52.

    Article  CAS  PubMed  Google Scholar 

  110. Lahmann PH, et al. Physical activity and ovarian cancer risk: the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomark Prev. 2009;18(1):351–4.

    Article  Google Scholar 

  111. Ainsworth BE, et al. Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc. 1993;25(1):71–80.

    Article  CAS  PubMed  Google Scholar 

  112. Chionh F, et al. Physical activity, body size and composition, and risk of ovarian cancer. Cancer Causes Control. 2010;21(12):2183–94.

    Article  PubMed  Google Scholar 

  113. Carlberg K, et al. A survey of menstrual function in athletes. Eur J Appl Physiol Occup Physiol. 1983;51(2):211–22.

    Article  Google Scholar 

  114. Frisch RE, et al. Delayed menarche and amenorrhea of college athletes in relation to age of onset of training. JAMA. 1981;246(14):1559–63.

    Article  CAS  PubMed  Google Scholar 

  115. Bonen A. Recreational exercise does not impair menstrual cycles: a prospective study. Int J Sports Med. 1992;13(2):110–20.

    Article  CAS  PubMed  Google Scholar 

  116. Rogol AD, et al. Durability of the reproductive axis in eumenorrheic women during 1 yr of endurance training. J Appl Physiol (1985). 1992;72(4):1571–80.

    CAS  Google Scholar 

  117. Ellison PT, Peacock NR, Lager C. Ecology and ovarian function among lese women of the Ituri Forest, Zaire. Am J Phys Anthropol. 1989;78(4):519–26.

    Article  CAS  PubMed  Google Scholar 

  118. Jasienska G, Ellison P. Heavy workload impairs ovarian function in Polish peasant women. Am J Phys Anthropol. 1993;16(Suppl):117–8.

    Google Scholar 

  119. Williams NI, et al. Evidence for a causal role of low energy availability in the induction of menstrual cycle disturbances during strenuous exercise training. J Clin Endocrinol Metab. 2001;86(11):5184–93.

    Article  CAS  PubMed  Google Scholar 

  120. Loucks AB. Energy availability, not body fatness, regulates reproductive function in women. Exerc Sport Sci Rev. 2003;31(3):144–8.

    Article  PubMed  Google Scholar 

  121. Rich-Edwards JW, et al. Physical activity, body mass index, and ovulatory disorder infertility. Epidemiology. 2002;13(2):184–90.

    Article  PubMed  Google Scholar 

  122. Holmes MD, et al. Physical activity and survival after breast cancer diagnosis. JAMA. 2005;293(20):2479–86.

    Article  CAS  PubMed  Google Scholar 

  123. Meyerhardt JA, et al. Physical activity and survival after colorectal cancer diagnosis. J Clin Oncol. 2006;24(22):3527–34.

    Article  PubMed  Google Scholar 

  124. Schmid D, Leitzmann MF. Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann Oncol. 2014;25(7):1293–311.

    Article  CAS  PubMed  Google Scholar 

  125. Cannioto RA, et al. Recreational physical inactivity and mortality in women with invasive epithelial ovarian cancer: evidence from the Ovarian Cancer Association Consortium. Br J Cancer. 2016;115(1):95–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhou Y, et al. Body mass index, physical activity, and mortality in women diagnosed with ovarian cancer: results from the Women’s Health Initiative. Gynecol Oncol. 2014;133(1):4–10.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zhou Y et al. (2015) Randomized trial of exercise on quality of life and fatigue in women diagnosed with ovarian cancer: the Women’s Activity and Lifestyle Study in Connecticut (WALC). In: ASCO Annual Meeting Proceedings.

    Google Scholar 

  128. Zhou Y, Cartmel B, Gottlieb L, Ercolano EA, Li F, Harrigan M, McCorkle R, Ligibel JA, von Gruenigen VE, Gogoi R, Schwartz PE. Randomized trial of exercise on quality of life in women with ovarian cancer: women’s activity and lifestyle study in connecticut (WALC). JNCI: J Natl Cancer Inst. 2017 Dec 1;109(12).

    Google Scholar 

  129. Hamer M, Smith L, Stamatakis E. Prospective association of TV viewing with acute phase reactants and coagulation markers: English Longitudinal study of ageing. Atherosclerosis. 2015;239(2):322–7.

    Article  CAS  PubMed  Google Scholar 

  130. Howard BJ, et al. Associations of overall sitting time and TV viewing time with fibrinogen and C reactive protein: the AusDiab study. Br J Sports Med. 2015;49(4):255–8.

    Article  PubMed  Google Scholar 

  131. Zhang M, et al. Sedentary behaviours and epithelial ovarian cancer risk. Cancer Causes Control. 2004;15(1):83–9.

    Article  PubMed  Google Scholar 

  132. Smits A, et al. Body mass index, physical activity and quality of life of ovarian cancer survivors: time to get moving? Gynecol Oncol. 2015;139(1):148–54.

    Article  PubMed  Google Scholar 

  133. Moore SC, et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med. 2016;176(6):816–25.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelley S. Tworoger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Huang, T., Tworoger, S.S. (2018). Physical Activity as a Risk Factor for Ovarian Cancer. In: Berger, N., Klopp, A., Lu, K. (eds) Focus on Gynecologic Malignancies. Energy Balance and Cancer, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-63483-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63483-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63482-1

  • Online ISBN: 978-3-319-63483-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics