Skip to main content

On the Number of Rich Words

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10396))

Included in the following conference series:

Abstract

Any finite word w of length n contains at most \(n+1\) distinct palindromic factors. If the bound \(n+1\) is reached, the word w is called rich. The number of rich words of length n over an alphabet of cardinality q is denoted \(R_q(n)\). For binary alphabet, Rubinchik and Shur deduced that \({R_2(n)}\le c 1.605^n \) for some constant c. In addition, Guo, Shallit and Shur conjectured that the number of rich words grows slightly slower than \(n^{\sqrt{n}}\). We prove that \(\lim \limits _{n\rightarrow \infty }\root n \of {R_q(n)}=1\) for any q, i.e. \(R_q(n)\) has a subexponential growth on any alphabet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balková, L.: Beta-integers and Quasicrystals, Ph. D. thesis, Czech Technical University in Prague and Université Paris Diderot-Paris 7 (2008)

    Google Scholar 

  2. Balková, L., Pelantová, E., Starosta, Š.: Sturmian jungle (or garden?) on multiliteral alphabets. RAIRO Theor. Inf. Appl. 44, 443–470 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bannai, H., Gagie, T., Inenaga, S., Kärkkäinen, J., Kempa, D., Piątkowski, M., Puglisi, S.J., Sugimoto, S.: Diverse palindromic factorization is NP-complete. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 85–96. Springer, Cham (2015). doi:10.1007/978-3-319-21500-6_6

    Chapter  Google Scholar 

  4. Massé, A.B., Brlek, S., Labbé, S., Vuillon, L.: Palindromic complexity of codings of rotations. Theor. Comput. Sci. 412, 6455–6463 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bucci, M., De Luca, A., Glen, A., Zamboni, L.Q.: A new characteristic property of rich words. Theor. Comput. Sci. 410, 2860–2863 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de Luca and Rauzy. Theor. Comput. Sci. 255, 539–553 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frid, A., Puzynina, S., Zamboni, L.: On palindromic factorization of words. Adv. Appl. Math. 50, 737–748 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. Eur. J. Comb. 30, 510–531 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guo, C., Shallit, J., Shur, A.M.: Palindromic rich words and run-length encodings. Inform. Process. Lett. 116, 735–738 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pelantová, E., Starosta, Š.: Palindromic richness for languages invariant under more symmetries. Theor. Comput. Sci. 518, 42–63 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rubinchik, M., Shur, A.M.: EERTREE: an efficient data structure for processing palindromes in strings. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015. LNCS, vol. 9538, pp. 321–333. Springer, Cham (2016). doi:10.1007/978-3-319-29516-9_27

    Chapter  Google Scholar 

  12. Rubinchik, M., Shur, A.M.: The number of distinct subpalindromes in random words. Fund. Inf. 145, 371–384 (2016)

    MathSciNet  Google Scholar 

  13. Schaeffer, L., Shallit, J.: Closed, palindromic, rich, privileged, trapezoidal, and balanced words in automatic sequences. Electr. J. Comb. 23, P1.25 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Shur, A.M.: Growth properties of power-free languages. Comput. Sci. Rev. 6, 187–208 (2012)

    Article  MATH  Google Scholar 

  15. Vesti, J.: Extensions of rich words. Theor. Comput. Sci. 548, 14–24 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Edita Pelantová and Štěpán Starosta for their useful comments. The author acknowledges support by the Czech Science Foundation grant GAČR 13-03538S and by the Grant Agency of the Czech Technical University in Prague, grant No. SGS14/205/OHK4/3T/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Rukavicka .

Editor information

Editors and Affiliations

Appendix

Appendix

For the reader’s convenience, we provide a proof of the well-known inequality we used in the proof of Proposition 9.

Lemma 11

\(\sum _{k=0}^L\left( {\begin{array}{c}N\\ k\end{array}}\right) \le \left( \frac{\mathrm {e}N}{L}\right) ^L\), where \(L\le N\) and \(L,N\in \mathbb {Z}^+\) (\(\mathbb {Z}^+\) denotes the set of positive integers).

Proof

Consider \(x\in (0,1]\). The binomial theorem states that

$$(1+x)^N=\sum _{k=0}^N\left( {\begin{array}{c}N\\ k\end{array}}\right) x^k\ge \sum _{k=0}^L\left( {\begin{array}{c}N\\ k\end{array}}\right) x^k\text{. }$$

By dividing by the factor \(x^L\) we obtain

$$ \sum _{k=0}^L\left( {\begin{array}{c}N\\ k\end{array}}\right) x^{k-L}\le \frac{(1+x)^N}{x^L}\text{. }$$

Since \(x\in (0,1]\) and \(k-L\le 0\), then \(x^{k-L}\ge 1\), it follows that

$$ \sum _{k=0}^L\left( {\begin{array}{c}N\\ k\end{array}}\right) \le \frac{(1+x)^N}{x^L}\text{. }$$

Let us substitute \(x=\frac{L}{N}\in (0,1]\) and let us use the inequality \(1+x<\mathrm {e}^x\), that holds for all \(x>0\):

$$ \frac{(1+x)^N}{x^L}\le \frac{\mathrm {e}^{xN}}{x^L}=\frac{\mathrm {e}^{\frac{L}{N}N}}{(\frac{L}{N})^L}=\left( \frac{\mathrm {e}N}{L}\right) ^L \text{. }$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rukavicka, J. (2017). On the Number of Rich Words. In: Charlier, É., Leroy, J., Rigo, M. (eds) Developments in Language Theory. DLT 2017. Lecture Notes in Computer Science(), vol 10396. Springer, Cham. https://doi.org/10.1007/978-3-319-62809-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62809-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62808-0

  • Online ISBN: 978-3-319-62809-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics