Skip to main content

A Practical Energy Modeling Method for Industrial Robots in Manufacturing

  • Conference paper
  • First Online:
Challenges and Opportunity with Big Data (Monterey Workshop 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10228))

Included in the following conference series:

Abstract

Industrial robots (IRs) are widely used in modern manufacturing systems, and energy problem of IRs is paid more attention to meet requirements of environment protection. Therefore, it is necessary to investigate the approaches to optimize the energy consumption of IRs, and the energy consumption model is the basis for enabling such approaches. Usually, energy consumption modeling for IRs is based on dynamic parameters identification. Meanwhile, the physical parameters, e.g. angle, velocity, acceleration, torque, etc. are all the necessary data of parameter identification. However, since the parts of IRs are not easy to be disassembled and the sensor modules can not be installed easily inside IRs, it is difficult to obtain all such physical parameters through sensing method, in particular the torque data. In this context, a practical energy modeling method by measuring total power for IRs is proposed. This method avoids the problem of directly measuring relevant parameters inside IRs, and the parameter identification process is gradually carried out by several excitation experiments. The experimental results show that the proposed energy modeling method can be used to predict the energy consumption of the process used in robot movement in manufacturing processes, and it can also efficiently support the analysis of the energy consumption characteristics of IRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, B., Zhang, L., Wang, S., Tao, F., Cao, J., Jiang, X., Song, X., Chai, X.: Cloud manufacturing: a new service-oriented networked manufacturing model. Comput. Integr. Manuf. Syst. 16(1), 1–1343 (2010)

    Google Scholar 

  2. Xu, X.: From cloud computing to cloud manufacturing. Rob. Comput.-Integr. Manuf. 28(1), 75–86 (2012)

    Article  Google Scholar 

  3. Ren, L., Zhang, L., Tao, F., Zhao, C., Chai, X., Zhao, X.: Cloud manufacturing: From concept to practice. Enterp. Inf. Syst. 9(2), 186–209 (2015). Taylor & Francis

    Article  Google Scholar 

  4. Saidur, R.: A review on electrical motors energy use and energy savings. Renew. Sustain. Energy Rev. 14(3), 877–898 (2010)

    Article  Google Scholar 

  5. Yang, A., Pu, J., Wong, C., et al.: By-pass valve control to improve energy efficiency of pneumatic drive system. Control Eng. Pract. 17(6), 623–628 (2009)

    Article  Google Scholar 

  6. Maimon, O., Profeta, E., Singer, S.: Energy analysis of robot task motions. J. Intell. Rob. Syst. 4(2), 175–198 (1991)

    Article  Google Scholar 

  7. Diken, H.: Energy efficient sinusoidal path planning of robot manipulators. Mech. Mach. Theory 29(6), 785–792 (1994)

    Article  Google Scholar 

  8. Sergaki, E., Stavrakakis, G., Pouliezos, A.: Optimal robot speed trajectory by minimization of the actuator motor electromechanical losses. J. Intell. Rob. Syst. 33(2), 187–207 (2002)

    Article  MATH  Google Scholar 

  9. Huang, M.S., Hsu, Y.L., Fung, R.F.: Minimum-energy point-to-point trajectory planning for a motor-toggle servomechanism. IEEE/ASME Trans. Mechatron. 17(2), 337–344 (2012)

    Article  Google Scholar 

  10. Field, G., Stepanenko, Y.: Iterative dynamic programming: an approach to minimum energy trajectory planning for robotic manipulators. IEEE Int. Conf. Rob. Autom. 3, 2755–2760 (1996)

    Article  Google Scholar 

  11. Kim, C.H., Kim, B.K.: Minimum-energy motion planning for differential-driven wheeled mobile robots. Motion Plan. 192–226 (2008)

    Google Scholar 

  12. Yongguo, M., Yung-Hsiang, L., Hu, Y., Lee, C.: Deployment of mobile robots with energy and timing constraints. IEEE Trans. Rob. 22(3), 507–522 (2006)

    Article  Google Scholar 

  13. Roos, F., Johansson, H., Wikander, J.: Optimal selection of motor and gearhead in mechatronic applications. Mechatronics 16(1), 63–72 (2006)

    Article  Google Scholar 

  14. Izumi, T., Zhou, H., Li, Z.: Optimal design of gear ratios and offset for energy conservation of an articulated manipulator. IEEE Trans. Autom. Sci. Eng. 6(3), 551–557 (2009)

    Article  Google Scholar 

  15. Meike, D., Pellicciari, M., Berselli, G.: Energy efficient use of multirobot production lines in the automotive industry: detailed system modeling and optimization. IEEE Trans. Autom. Sci. Eng. 11(3), 798–809 (2014)

    Article  Google Scholar 

  16. Paryanto, Brossog, M., Bornschlegl, M., Franke, J.: Reducing the energy consumption of industrial robots in manufacturing systems. Int. J. Adv. Manuf. Technol. 78(5–8), 1315–1328 (2015)

    Article  Google Scholar 

  17. Wu, J., Wang, J., You, Z.: An overview of dynamic parameter identification of robots. Rob. Comput.-Integr. Manuf. 26(5), 414–419 (2010)

    Article  Google Scholar 

  18. Swevers, J., Verdonck, W., Schutter, J.D.: Dynamic model identification for industrial robots. IEEE Control Syst. Mag. 27(5), 58–71 (2007)

    Article  MathSciNet  Google Scholar 

  19. Chen, E.W., Liu, Z.S., Gan, F.J.: Method of identifying inertial parameters of manipulator based on wrist force sensor. Robot 28(2), 125–129 (2006)

    Google Scholar 

  20. Christoforou, E.G.: On-line parameter identification and adaptive control of rigid robots using base reaction forces/torques. In: IEEE International Conference on Robotics & Automation, pp. 4956–4961 (2007)

    Google Scholar 

  21. Verdonck, W., Swevers, J., Samin, J.: Experimental dynamic robot identification: advantages of combining internal and external measurements and of using periodic excitation. J. Dyn. Syst. Meas. Control-Trans. ASME 123(4), 630–636 (2001)

    Article  Google Scholar 

  22. Gautier, M., Khalil, W.: Exciting trajectories for the identification of base inertial parameters of robots. Int. J. Robot. Res. 11(4), 362–375 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (Grant No. 51305319), the International Science & and Technology Cooperation Program of China (Grant No. 2015DFA70340), and Engineering and Physical Sciences Research Council (EPSRC), UK (Grant No. EP/N018524/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xu, W., Liu, H., Liu, J., Zhou, Z., Pham, D.T. (2017). A Practical Energy Modeling Method for Industrial Robots in Manufacturing. In: Zhang, L., Ren, L., Kordon, F. (eds) Challenges and Opportunity with Big Data. Monterey Workshop 2016. Lecture Notes in Computer Science(), vol 10228. Springer, Cham. https://doi.org/10.1007/978-3-319-61994-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61994-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61993-4

  • Online ISBN: 978-3-319-61994-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics