Skip to main content

History of the Development of Guidewires, Access Sheaths, Baskets, and Ureteral Stents

  • Chapter
  • First Online:
The History of Technologic Advancements in Urology

Abstract

Guidewires are a mainstay of endourologic procedures, as they provide safe access to the urinary tract and allow the passage of catheters and stents [1]. The development of guidewires in urology began with the application of angiographic tools in urologic endoscopy. Fritzche et al. reported the use of angiographic guidewires in 7 patients with ureteral obstruction in 1981 [2]. The authors noted in this study that their methods allow the “placement of angiographic guide wires and catheters past ureteral obstacles when standard urological retrograde procedures are not feasible technically.” The transvesical approach was described as where a 6Fr open-ended polyethylene catheter was placed at the ureterovesical junction and followed by advancing a 0.035 in. diameter guide wire [2]. The authors noted several advantages of the angiographic catheters and wires that allowed their urological application. The smaller diameter floppy tip reduced the risk of ureteral injury. A curve could be applied to the wire to facilitate manipulation and a wide range of shapes and sizes available for angiography allowed the urologist to attach a stone basket to the catheter for multiple passages through the level of obstruction [2]. Advances over subsequent years created specialized categories of guidewires which allowed the urologist to select the most appropriate tool for a given circumstance. These wires include hydrophilic straight and angled guidewires (used for bypassing more difficult obstructions or for the tortuous ureter), the hybrid wires (wires with a hydrophilic distal tip for bypassing obstructing stones and a nitinol core which is kink resistant to be used as a working wire) and stiffer wires such as Amplatz extra stiff (used to straighten ureter or for stabilization when passing dilating catheters and access sheaths) [1, 3]. More recent studies have evaluated the mechanical characteristics and performance elements of guidewires, including tip bending, resistance, pull force, shaft bending resistance, tip puncture force, shaft stiffness, and lubricity [1, 4]. The authors corroborated that hybrid wires offer the combination of the hydrophilic tip and stiffer shaft than standard wires, while the extra stiff wires may be best-suited for placement of ureteral access sheaths or larger stents. Interestingly they also noted that “brand name” guidewires designed for the same purposes may differ from one manufacturer to the next.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clayman M, Uribe CA, Eichel L, Gordon Z, McDougall EM, Clayman RC. Comparison of guide wires in urology. Which, when and why? J Urol. 2004;171:2146–50.

    Article  PubMed  Google Scholar 

  2. Fritzsche P, Moorhead JD, Axford PD, Torrey RR. Urologic applications of angiographic guide wire and catheter techniques. J Urol. 1981;125:774–80.

    Article  CAS  PubMed  Google Scholar 

  3. Bagley DH, Kuo RL, Zeltser IS. An update on ureteroscopic instrumentation for the treatment of urolithiasis. Curr Opin Urol. 2004;14:99–106.

    Article  PubMed  Google Scholar 

  4. Sarkissian C, Korman E, Hendlin K, Monga M. Systematic evaluation of hybrid guidewires: shaft stiffness, lubricity, and tip configuration. Urology. 2012;79:513–7.

    Article  PubMed  Google Scholar 

  5. Ekman P, Husain I, Sharma N, Al-Faqih SR. Transurethral ureteroscopy. Safety guide wire as an aid to a more aggressive approach. Br J Urol. 1987;60:23–7.

    Article  CAS  PubMed  Google Scholar 

  6. Krambeck AE, Murat FJ, Gettman MT, et al. The evolution of ureteroscopy: a modern single-institution series. Mayo Clin Proc. 2006;81:468.

    Article  PubMed  Google Scholar 

  7. Dickstein RJ, Kreshover JE, Babayan RK, et al. Is a safety wire necessary during routine flexible ureteroscopy? J Endourol. 2010;24:1589.

    Article  PubMed  Google Scholar 

  8. Eandi JA, Hu B, Low RK. Evaluation of the impact and need for use of a safety guidewire during ureteroscopy. J Endourol. 2008;22:1653.

    Article  PubMed  Google Scholar 

  9. Dutta R, Vyas A, Landman J, et al. Death of the safety guidewire. J Endourol. 2016;30:941–4.

    Article  PubMed  Google Scholar 

  10. Patel SR, McLaren ID, Nakada SY. The ureteroscope as a safety wire for ureteronephroscopy. J Endourol. 2012;26:351.

    Article  PubMed  Google Scholar 

  11. Rizkala ER, Monga M. Controversies in ureteroscopy: wire, basket, and sheath. Indian J Urol. 2013;29:244.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Takayasu H, Aso Y. Recent development for pyeloureteroscopy: guide tube method for its introduction into the ureter. J Urol. 1974;112:176.

    Article  CAS  PubMed  Google Scholar 

  13. Newman R, Hunter PT, Hawkins I, et al. A general ureteral dilator-sheathing system. Urology. 1985;25:287.

    Article  CAS  PubMed  Google Scholar 

  14. Newman RC, Hunter PT, Hawkins IF, et al. The ureteral access system: a review of the immediate results in 43 cases. J Urol. 1987;137:380.

    Article  CAS  PubMed  Google Scholar 

  15. Rich M, Lee WJ, Smith AD. Applications of the peel-away introducer sheath. J Urol. 1987;137:452.

    Article  CAS  PubMed  Google Scholar 

  16. Kourambas J, Byrne RR, Preminger GM. Dose a ureteral access sheath facilitate ureteroscopy? J Urol. 2001;165:789.

    Article  CAS  PubMed  Google Scholar 

  17. Auge BK, Pietrow PK, Lallas CD, et al. Ureteral access sheath provides protection against elevated renal pressures during routine flexible ureteroscopic stone manipulation. J Endourol. 2004;18:33.

    Article  PubMed  Google Scholar 

  18. Rehman J, Monga M, Landman J, et al. Characterization of intrapelvic pressure during ureteropyeloscopy with ureteral access sheaths. Urology. 2003;61:713.

    Article  PubMed  Google Scholar 

  19. Pietrow PK, Auge BK, Delvecchio FC, et al. Techniques to maximize flexible ureteroscope longevity. Urology. 2002;60:784.

    Article  PubMed  Google Scholar 

  20. Delvecchio FC, Auge BK, Brizuela RM, et al. Assessment of stricture formation with the ureteral access sheath. Urology. 2003;61:518.

    Article  PubMed  Google Scholar 

  21. Traxer O, Wendt-Nordahl G, Sodha H, et al. Differences in renal stone treatment and outcomes for patients treated either with or without the support of a ureteral access sheath: the clinical research office of the endourological society ureteroscopy global study. World J Urol. 2015;33:2137.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dauw CA, Simeon L, Alruwaily AF, et al. Contemporary practice patterns of flexible ureteroscopy for treating renal stones: results of a worldwide survey. J Endourol. 2015;29:1221.

    Article  PubMed  Google Scholar 

  23. Davis TA. Removal of ureteral calculus by a new catheter type extractor. J Urol. 1954;72:346.

    Article  CAS  PubMed  Google Scholar 

  24. Constantian HM. Use of the Davis nylon loop extractor for removal of low ureteral calculi. J Urol. 1967;97:248.

    Article  CAS  PubMed  Google Scholar 

  25. Warren JW Jr. The Davis loop stone extractor: results of use. J Urol. 1961;86:684.

    Article  PubMed  Google Scholar 

  26. Dormia E. Dormia basket: standard technique, observations, and general concepts. Urology. 1982;20:437.

    Article  CAS  PubMed  Google Scholar 

  27. Conlin MJ, Marberger M, Bagley DH. Ureteroscopy: development and instrumentation. Urol Clin North Am. 1997;24:25.

    Article  CAS  PubMed  Google Scholar 

  28. Kavoussi L, Clayman RV, Basler J. Flexible, actively deflectable fiberoptic ureteronephroscopy. J Urol. 1989;142:949.

    Article  CAS  PubMed  Google Scholar 

  29. Grasso M, Bagley D. A 7.5/8.2 F actively deflectable, flexible ureteroscope: a new device for both diagnostic and therapeutic upper urinary tract endoscopy. Urology. 1994;43:435.

    Article  CAS  PubMed  Google Scholar 

  30. Honey RJD. Assessment of a new tipless nitinol stone basket and comparison with an existing flat-wire basket. J Endourol. 1998;12:529.

    Article  CAS  PubMed  Google Scholar 

  31. Dretler SP. Ureteroscopy for proximal ureteral calculi: prevention of stone migration. J Endourol. 2000;14:565.

    Article  CAS  PubMed  Google Scholar 

  32. Dretler SP. The stone cone: a new generation of basketry. J Urol. 2001;165:1593.

    Article  CAS  PubMed  Google Scholar 

  33. Eisner BH, Dretler SP. Use of the stone cone for prevention of calculus retropulsion during holmium:YAG laser lithotripsy: case series and review of the literature. Urol Int. 2009;82:356.

    Article  PubMed  Google Scholar 

  34. Ding H, Wang Z, Du W, et al. NTrap in prevention of stone migration during ureteroscopic lithotripsy for proximal ureteral stones: a meta-analysis. J Endourol. 2012;26:130.

    Article  PubMed  Google Scholar 

  35. Rane A, Bradoo A, Rao P, et al. The use of a novel reverse thermosensitive polymer to prevent ureteral stone retropulsion during intracorporeal lithotripsy: a randomized, controlled trial. J Urol. 2010;183:1417.

    Article  PubMed  Google Scholar 

  36. JA W, Ngo TC, Hagedorn JC, et al. The accordion antiretropulsive device improves stone-free rates during ureteroscopic laser lithotripsy. J Endourol. 2013;27:438.

    Article  Google Scholar 

  37. Herman JR. Urology: a view through the retrospectroscope. New York: HarperCollins Publishers; 1973.

    Google Scholar 

  38. Tulloch WS. Restoration of the continuity of the ureter by means of polythene tubing. Br J Urol. 1952;24:42.

    CAS  PubMed  Google Scholar 

  39. Zimskind PD, Fetter TR, Wilkerson JL. Clinical use of long-term indwelling silicone rubber ureteral splints inserted cystoscopically. J Urol. 1967;97:840.

    Article  CAS  PubMed  Google Scholar 

  40. Gibbons RP, Correa RJ Jr, Cummings KB, et al. Experience with indwelling ureteral stent catheters. J Urol. 1976;115:22.

    Article  CAS  PubMed  Google Scholar 

  41. Finney RP. Experience with new double J ureteral catheter stent. J Urol. 1978;120:678.

    Article  CAS  PubMed  Google Scholar 

  42. Chew BH, Lange D. Advances in ureteral stent development. Curr Opin Urol. 2016;26:277.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Hernandez Bustos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bustos, N.H., Yaghoubian, A., Mozafarpour, S., Eisner, B. (2018). History of the Development of Guidewires, Access Sheaths, Baskets, and Ureteral Stents. In: Patel, S., Moran, M., Nakada, S. (eds) The History of Technologic Advancements in Urology. Springer, Cham. https://doi.org/10.1007/978-3-319-61691-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61691-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61689-6

  • Online ISBN: 978-3-319-61691-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics