Skip to main content

The Spin Coupling in the Polyaromatic Hydrocarbons and Carbon-Based Materials

  • Chapter
  • First Online:
Carbon-related Materials in Recognition of Nobel Lectures by Prof. Akira Suzuki in ICCE

Abstract

The Heisenberg spin Hamiltonian is the quantitative expression of the heuristic idea that the chemical bonding is made by the pairing of two electrons with opposite spins. It is also the parametric phenomenological form of the valence bond (VB) method, the first theory of the electronic molecular structure. This frame is well suited to account the structure and properties of aromatic hydrocarbons. The issue of aromaticity was revisited with modern VB calculations and numeric experiments with other techniques, such as density functional theory (DFT) complemented with analyses in the frame of natural bond orbitals (NBOs) and natural resonance theory (NRT). The aromatic delocalization is a molecular facet of the same mechanisms that are determining electron conduction in carbon-based materials. The linear polyacenes were approached in the spin-coupling paradigm as molecular models of conductions. The same methodology was applied to the hydrocarbons with triangular shape, which are carrying unpaired electrons because of topological reasons. Known small members of the series are the phenalenyl radical and the triangulene biradical. Extrapolating the analysis to extended systems, one may speculate about a spintronics based on triangular-shaped graphenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Suzuki, Synthetic studies via the cross-coupling reaction of organoboron derivatives with organic halides. Pure Appl. Chem. 63(3), 419–422 (1991)

    Article  Google Scholar 

  2. E. Clar, Polycyclic Hydrocarbons (Academic Press, London, 1964)

    Book  Google Scholar 

  3. Y. Geerts, G. Klärner, K. Müllen, in Electronic Materials: The Oligomer Approach, ed. by K. Müllen, G. Wagner (Wiley-VCH, Weinheim, 1998), p. 48

    Google Scholar 

  4. C. Joachim, M.A. Ratner, Molecular electronics: Some views on transport junctions and beyond. Proc. Natl. Acad. Sci. 102, 8801–8808 (2005)

    Article  Google Scholar 

  5. V.A. Dediu, L.E. Hueso, I. Bergenti, C. Taliani, Spin routes in organic semiconductors. Nat. Mater. 8, 707–716 (2009)

    Article  Google Scholar 

  6. S. Sanvito, Organic electronics: Memoirs of a spin. Nat. Nanotechnol. 2, 204–206 (2007)

    Article  Google Scholar 

  7. S. Pramanik, C.G. Stefanita, S. Patibandla, S. Bandyopadhyay, K. Garre, N. Harth, M. Cahay, Observation of extremely long spin relaxation times in an organic nanowire spin valve. Nat. Nanotechnol. 2, 216–219 (2007)

    Article  Google Scholar 

  8. W. Koch, M.C. Holthausen, A Chemist's Guide to Density Functional Theory (VCH, Berlin, 2001)

    Book  Google Scholar 

  9. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision E 01 (Gaussian, Wallingford, 2009)

    Google Scholar 

  10. G.A. Gallup, Valence Bond Methods (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  11. S. Shaik, P.C. Hiberty, A Chemist’s Guide to Valence Bond Theory (Wiley, Hoboken, 2007)

    Book  Google Scholar 

  12. A. T. Balaban (ed.), Chemical Applications of Graph Theory (Academic, London, 1976)

    Google Scholar 

  13. A.T. Balaban, Challenging problems involving Benzenoid polycyclic and related systems. Pure Appl. Chem. 54, 1075 (1982)

    Article  Google Scholar 

  14. H. Hosoya, Clar’s aromatic sextet and sextet polynomial. Top. Curr. Chem. 153, 255 (1990)

    Article  Google Scholar 

  15. M. Randić, Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 103, 3449–3605 (2003)

    Article  Google Scholar 

  16. W.C. Herndon, M.L. Ellzey Jr., Resonance theory. V. Resonance energies of benzenoid and nonbenzenoid π systems. J. Am. Chem. Soc. 96, 6631 (1974)

    Article  Google Scholar 

  17. W.C. Herndon, Resonance energies of π hydrocarbon radicals. Radical reactivities of polycyclic aromatic hydrocarbons. J. Organomet. Chem. 46, 2119–2125 (1981)

    Article  Google Scholar 

  18. W. Heitler, F. London, Interaction between neutral atoms and homopolar binding. Z. Phys. 44, 455–472 (1927)

    Article  Google Scholar 

  19. W.Z. Heisenberg, Zurtheorie des ferromagnetismus. W. Zeit. Phys. 49, 619–636 (1928)

    Article  Google Scholar 

  20. J.H. van Vleck, A. Sherman, The quantum theory of valence. Rev. Mod. Phys. 7, 167–228 (1953)

    Article  Google Scholar 

  21. P.W. Anderson, New approach to the theory of superexchange interactions. Phys. Rev. 115, 2–13 (1959)

    Article  Google Scholar 

  22. O. Kahn, Molecular Magnetism (VCH Publisher, New York, 1993)

    Google Scholar 

  23. M. Said, D. Maynau, J.P. Malrieu, Excited-state properties of linear polyenes studied through a nonempirical Heisenberg Hamiltonian. J. Am. Chem. Soc. 106(3), 580–587 (1984)

    Article  Google Scholar 

  24. M.A. Garciabach, P. Blaise, J.P. Malrieu, Dimerization of polyacetylene treated as a spin-Peierls distortion of the Heisenberg Hamiltonian. Phys. Rev. B Condens. Matter 46(24), 15645–15651 (1992)

    Article  Google Scholar 

  25. J. Cioslowski, Graph theoretical approach to the topological spin hamiltonian applied to conjugated molecules. Chem. Phys. Lett. 134(6), 507–511 (1987)

    Article  Google Scholar 

  26. N. Flocke, T.G. Schmalz, D.J. Klein, Variational resonance valence bond study on the ground state of C60 using the Heisenberg model. J. Chem. Phys. 109(3), 873–880 (1998)

    Article  Google Scholar 

  27. D.J. Klein, H. Zhu, R. Valenti, M.A. Garciabach, Many-body valence-bond theory. Int. J. Quantum Chem. 65(5), 421–438 (1997)

    Article  Google Scholar 

  28. J. Li, B. Duke, R. McWeeny, VB2000 Version 2.0. SciNet Technologies, San Diego, (2007)

    Google Scholar 

  29. J. Li, R. McWeeny, VB2000: Pushing valence bond theory to new limits. Int. J. Quantum Chem. 89, 208–216 (2002)

    Article  Google Scholar 

  30. L. Song, Z. Chen, F. Ying, J. Song, X. Chen, P. Su, Y. Mo, Q. Zhang, W. Wu, XMVB 2.0: An ab initio Non-Orthogonal Valence Bond Program. Xiamen University, Xiamen 361005, China (2012)

    Google Scholar 

  31. L. Song, Y. Mo, Q. Zhang, W. Wu, XMVB: a program for ab initio nonorthogonal valence bond computations. J. Comput. Chem. 26, 514–521 (2005)

    Article  Google Scholar 

  32. K. Hirao, H. Nakano, K. Nakayama, M. Dupuis, A complete active space valence bond (CASVB) method. J. Chem. Phys. 105(20), 9227–9239 (1996)

    Article  Google Scholar 

  33. T. Thorsteinsson, D.L. Cooper, Modern valence bond descriptions of molecular excited states: an application of CASVB. Int. J. Quantum Chem. 70(4–5), 637–650 (1998)

    Article  Google Scholar 

  34. M. Raimondi, D.L. Cooper, Ab initio modern valence bond theory. P.R. Surján, R.J. Bartlett, F. Bogár, D.L. Cooper, B. Kirtman, W. Klopper, W. Kutzelnigg, N.H. March, P.G. Mezey, H. Müller, J. Noga, J. Paldus, J. Pipek, M. Raimondi, I. Røeggen, J.Q. Sun, P.R. Surján, C. Valdemoro, S. Vogtner, Topics in Current Chemistry: Localization and Delocalization, vol. 203 (1999), pp. 105–120

    Google Scholar 

  35. H. Nakano, K. Sorakubo, K. Nakayama, K. Hirao, in Valence Bond Theory, ed. by D. L. Cooper (Elsevier Science, Amsterdam, 2002), pp. 55–77

    Google Scholar 

  36. L. Pauling, G.W. Wheland, The nature of the chemical bond. V. The quantum-mechanical calculation of the resonance energy of benzene and naphthalene and the hydrocarbon free radicals. J. Chem. Phys. 1, 362 (1933)

    Article  Google Scholar 

  37. D.L. Cooper, J. Gerratt, M. Raimondi, The electronic structure of the benzene molecule. Nature. London 323, 699 (1986)

    Article  Google Scholar 

  38. E.C. da Silva, J. Gerratt, D.L. Cooper, M. Raimondi, Study of the electronic states of the benzene molecule using spin-coupled valence bond theory. J. Chem. Phys. 101, 3866 (1994)

    Article  Google Scholar 

  39. R. McWeeny, Classical structures in modern valence bond theory. Theor. Chim. Acta 73, 115 (1988)

    Article  Google Scholar 

  40. P.C. Hiberty, D. Danovich, A. Shurki, A. Shaik, Why does benzene possess a D6h symmetry? A Quasiclassical state approach for probing p-bonding and delocalization energies. J. Am. Chem. Soc. 117, 7760 (1995)

    Article  Google Scholar 

  41. G. Rumer, ZumTheorie der Spinvalenz. In: Nachrichten der Akademie der Wissenschaften in Göttingen, Mathematisch-PhysikalischeKlasse, Göttingen, (1932), pp. 337–341

    Google Scholar 

  42. R. Serber, Extension of the Dirac vector model to include several configurations. Phys. Rev. 45, 461–467 (1934)

    Article  Google Scholar 

  43. M. Kotani, A. Amemiya, E. Ishiguro, T. Kimura, Table of Molecular Integrals (Maruzen Co. Ltd., Tokyo, 1955)

    Google Scholar 

  44. W. Research, Inc Mathematica (Champaign, Illinois, 2014)

    Google Scholar 

  45. S. Wolfram, The Mathematica book (5. ed.), Wolfram-Media, (2003), pp. I–XXIV, 1–1464

    Google Scholar 

  46. E.D. Glendening, F. Weinhold, Natural resonance theory: I. General formalism. J. Comput. Chem. 19(6), 593–609 (1998)

    Article  Google Scholar 

  47. E.D. Glendening, F. Weinhold, Natural resonance theory: II. Natural bond order and valency. J. Comput. Chem. 19, 610–627 (1998)

    Article  Google Scholar 

  48. E.D. Glendening, J.K. Badenhoop, F. Weinhold, Natural resonance theory: III. Chemical applications. J. Comput. Chem. 19, 628–646 (1998)

    Article  Google Scholar 

  49. A.E. Reed, L.A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88, 899–926 (1988)

    Article  Google Scholar 

  50. E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, The NBO3.0 program, University of Wisconsin, Copyright 1996–2001

    Google Scholar 

  51. J.C.A. Slater, Simplification of the Hartree-Fock method. Phys. Rev. 81, 385–390 (1951)

    Article  Google Scholar 

  52. S.J. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200–1211 (1980)

    Article  Google Scholar 

  53. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988)

    Article  Google Scholar 

  54. J.P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822–8824 (1986)

    Article  Google Scholar 

  55. C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  Google Scholar 

  56. L. Noodleman, Valence bond description of antiferromagnetic coupling in transition metal dimmers. J. Chem. Phys. 74, 5737–5743 (1981)

    Article  Google Scholar 

  57. L. Noodleman, E.R. Davidson, Ligand spin polarization and antiferromagnetic coupling in transition metal dimmers. Chem. Phys. 109, 131–143 (1986)

    Article  Google Scholar 

  58. E. Ruiz, J. Cano, S. Alvarez, P. Alemany, Broken symmetry approach to calculation of exchange coupling constants for homobinuclear and heterobinuclear transition metal complexes. J. Comput. Chem. 20, 1391–1400 (1999)

    Article  Google Scholar 

  59. A. Bencini, F. Totti, C.A. Daul, K. Doclo, P. Fantucci, V. Barone, Density functional calculations of magnetic exchange interactions in polynuclear transition metal complexes. Inorg. Chem. 36(22), 5022–5030 (1997)

    Article  Google Scholar 

  60. M. Sironi, D.L. Copper, J. Gerratt, M. Raimondi, The modern valence bond description of naphthalene. J. Chem. Soc. Chem. Commun. 675 (1989)

    Google Scholar 

  61. S. Shaik, S. Zilberg, Y. Haas, A Kekule-crossing model for the “anomalous” behavior of the b2u mode of aromatic hydrocarbons in the lowest excited 1B2u state. Acc. Chem. Res. 29, 211 (1996)

    Article  Google Scholar 

  62. D.L. Packett, C.M. Jensen, R.L. Cowan, C.E. Strouse, W.C. Trogler, Syntheses, structures, and mechanisms of formation of trans-Chlorohydrobis-(trimethylphosphine)platinum(II) and trans-Dihydrobis(trimethylphosphine)platinum(II). Energetics of Cis-Trans Isomerization. Inorg. Chem. 24, 3578 (1985)

    Article  Google Scholar 

  63. J. Lefebvre, G. Odou, M. Muller, A. Mierzejewski, T. Luty, Characterization of an Orientational disorder in two charge-transfer complexes: anthracene-Tetracyanobenzene (A-TCNB) and naphthalene-Tetracyanobenzene (N-TCNB). Acta Crystallogr. Sect. B: Struct. Sci. 45, 323 (1989)

    Article  Google Scholar 

  64. M. Le Bars-Combe, J. Lajzerowicz-Bonneteau, Complexe naphtalène-dianhydride d'acide pyromellitique. I. Transition ordre-désordre et structure basse température de la forme orange. Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 37, 1707 (1981)

    Google Scholar 

  65. S. Zilberg, Y. Haas, S. Shaik, Electronic Spectrum of anthracene: an ab-initio molecular orbital calculations combined with a valence bond interpretation. J. Phys. Chem. 99, 16558 (1995)

    Article  Google Scholar 

  66. R. Mason, The crystallography of anthracene at 95°K and 290°K. Acta Crystallogr. 17, 547 (1964)

    Article  Google Scholar 

  67. C.P. Brock, J.D. Dunitz, Temperature dependence of thermal motion in crystalline anthracene. Acta Crystallogr. Sect. B: Struct. Sci. 46, 795 (1990)

    Article  Google Scholar 

  68. J.G. Malecki, CSD Communication (Private Communication) (2013)

    Google Scholar 

  69. M. Lusi, I.J. Vitorica-Yrezabal, M.J. Zaworotko, Expanding the scope of molecular mixed crystals enabled by three component solid solutions. Cryst. Growth Des. 15, 4098–4103 (2015)

    Article  Google Scholar 

  70. X. Du, I. Skachko, A. Barker, E.Y. Andrei, Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3(8), 491–495 (2008)

    Article  Google Scholar 

  71. M.M. Payne, S.R. Parkin, J.E. Anthony, Functionalized higher acenes: hexacene and heptacene. J. Am. Chem. Soc. 127, 8028–8029 (2005)

    Article  Google Scholar 

  72. M. Bendikov, F. Wudl, D.F. Perepichka, Tetrathiafulvalenes, oligoacenenes and their buckminsterfullerene derivatives: the brick and mortar of organic electronics. Chem. Rev. 104, 4891–4945 (2004)

    Article  Google Scholar 

  73. J.E. Anthony, Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 106, 5028–5048 (2006)

    Article  Google Scholar 

  74. J.H. Schön, C. Kloc, A. Dodabalapur, B. Batlogg, An organic solid state injection laser. Science 289, 599–601 (2000)

    Article  Google Scholar 

  75. F.A. Hegmann, R.R. Tykwinski, K.P.H. Lui, J.E. Bullock, J.E. Anthony, Picosecond transient photoconductivity in Functionalized Pentacene molecular crystals probed by terahertz pulse spectroscopy. Phys. Rev. Lett. 89, 227403 (2002)

    Article  Google Scholar 

  76. C. Raghu, Y.A. Pati, S. Ramasesha, Structural and electronic instabilities in polyacenes: density-matrix renormalization group study of a long-range interacting model. Phys. Rev. B 65, 155204 (2002)

    Article  Google Scholar 

  77. S. Kivelson, O.L. Chapman, Polyacene and a new class of quasi-one-dimensional conductors. Phys. Rev. B 28, 7236–7243 (1983)

    Article  Google Scholar 

  78. J. Aihara, Why are some polycyclic aromatic hydrocarbons extremely reactive? Phys. Chem. Chem. Phys. 1, 3193–3197 (1999)

    Article  Google Scholar 

  79. A.R. Reddy, M. Bendikov, Diels–Alder reaction of acenes with singlet and triplet oxygen – theoretical study of two-state reactivity. Chem. Commun., 1179–1181 (2006)

    Google Scholar 

  80. J.A. Pople, S.H. Walmsley, Bond alternation defects in long polyene molecules. Mol. Phys. 5, 15–20 (1962)

    Article  Google Scholar 

  81. M.R. Philpott, F. Cimpoesu, Y. Kawazoe, Bonding and magnetism in high symmetry Nano-sized graphene molecules: Linear Acenes C4m+2H2m+4 (m = 2,…,25); zigzag Hexangulenes C6m**2H6m (m = 2,…10); crenelated Hexangulenes C6(3m**2−3m+1)H6(2m−1) (m = 2,…6); zigzag Triangulenes. Mater. Trans. 49(11), 2448–2456 (2008)

    Article  Google Scholar 

  82. M.R. Philpott, F. Cimpoesu, Y. Kawazoe, Geometry, bonding and magnetism in planar triangulenegraphenes with D3h symmetry. Chem. Phys. 354, 1–15 (2008)

    Article  Google Scholar 

  83. J. Higuchi, Zero-field Splittings in molecular multiplets: spin-spin interaction of methylene derivatives. J. Chem. Phys. 38, 1237–1245 (1963)

    Article  Google Scholar 

  84. H.C. Longuet-Higgings, Some studies in molecular orbital theory I. Resonance structures and molecular orbitals in unsaturated hydrocarbons. J. Chem. Phys. 18, 265–274 (1950)

    Article  Google Scholar 

  85. E.H. Lieb, Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989)

    Article  Google Scholar 

  86. H. Iwamura, High-spin organic molecules and spin alignment in organic molecular assemblies. Adv. Phys. Org. Chem. 26, 179–253 (1990)

    Google Scholar 

  87. S.E. Stein, R.L. Brown, π-electron properties of large condensed polyaromatic hydrocarbon. J. Am. Chem. Soc. 109, 3721–3729 (1987)

    Article  Google Scholar 

  88. J. Fernandez-Rossier, J.J. Palacios, Magnetism in graphene Nanoislands. Phys. Rev. Lett. 99, 177204–177204 (2007)

    Article  Google Scholar 

  89. E. Clar, D.G. Stewart, Aromatic hydrocarbons LXV. Triangulene derivatives. J. Am. Chem. Soc. 75(11), 2667–2672 (1953)

    Article  Google Scholar 

  90. A.K. Geim, A.H. MacDonald, Graphene: Exploring carbon flatland. Phys. Today 60, 35–41 (2007)

    Google Scholar 

  91. K.S. Novoselov, D. Jiang, F. Schedlin, V.V. Khotkevich, S.V. Morozov, A.K. Giem, Two dimensional atomic crystals. Proc. Nat. Acad. Sci. (U.S.) 102, 10451–10453 (2005)

    Article  Google Scholar 

  92. R.G. Hicks, What’s new in stable radical chemistry? Org. Biomol. Chem. 5, 1321–1338 (2007)

    Article  Google Scholar 

  93. Y. Morita, S. Suzuki, K. Sato, T. Takui, Synthetic organic spin chemistry for structurally well-defined open-shell graphene fragments. Nat. Chem. 3, 197 (2011)

    Article  Google Scholar 

  94. K. Goto, T. Kubo, K. Yamamoto, K. Nakasuji, K. Sato, D. Shiomi, T. Takui, M. Kubota, T. Kobayashi, K. Yakusi, J. Ouyang, A stable neutral hydrocarbon radical: synthesis, crystal structure and physical properties of 2,5,8-tri-tert-butyl-phenalenyl. J. Am. Chem. Soc. 121, 1619–1620 (1999)

    Article  Google Scholar 

  95. D. Small, V. Zaitsev, Y. Jung, S.V. Rosokha, M. Head-Gordon, J.K. Kochi, Intermolecular π-to-π bonding between stacked aromatic dyads. Experimental and theoretical binding energies and near-IR optical transitions for phenalenyl radical/radical versus radical/cation dimerizations. J. Am. Chem. Soc. 126, 13850–13858 (2004)

    Article  Google Scholar 

  96. S. Suzuki, Y. Morita, K. Fukui, K. Sato, D. Shiomi, T. Takui, K. Nakasuji, Aromaticity on the pancake-bonded dimer of neutral phenalenyl radical as studied by MS and NMR spectroscopies and NICS analysis. J. Am. Chem. Soc. 128, 2530–2531 (2006)

    Article  Google Scholar 

  97. L. Beer, S.K. Mandal, R.W. Reed, R.T. Oakley, F.S. Tham, B. Donnadieu, R.C. Haddon, The first electronically stabilized phenalenyl radical: effect of substituents on solution chemistry and solid-state structure. Cryst. Growth Des. 7, 802–809 (2007)

    Article  Google Scholar 

  98. Y. Morita, T. Ohba, N. Haneda, S. Maki, J. Kawai, K. Hatanaka, K. Sato, D. Shiomi, T. Takui, K. Nakasuji, New persistent radicals: synthesis and electronic spin structure of 2,5-di-tert-butyl-6-oxophenalenoxyl derivatives. J. Am. Chem. Soc. 122, 4825–4826 (2000)

    Article  Google Scholar 

  99. Y. Morita, S. Suzuki, K. Fukui, Thermochromism in an organic crystal based on the coexistence of ó- and ð-dimers. Nat. Mater. 7, 48–51 (2008)

    Article  Google Scholar 

  100. S. Nishida, Y. Morita, K. Fukui, K. Sato, D. Shiomi, T. Takui, K. Nakasuji, Spin transfer and solvato−/thermochromism induced by intramolecular electron transfer in a purely organic open-shell system. Angew. Chem. Int. Ed. 44, 7277–7280 (2005)

    Article  Google Scholar 

  101. M.E. Itkis, X. Chi, A.W. Cordes, R.C. Haddon, Magneto-optoelectronic bistability in a phenalenyl-based neutral radical. Science 296, 1443–1445 (2002)

    Article  Google Scholar 

  102. S.K. Pal, M.E. Itkis, F.S. Tham, R.W. Reed, R.T. Oakley, R.C. Haddon, Resonating valence-bond ground state in a phenalenyl-based neutral radical conductor. Science 309, 281–284 (2005)

    Article  Google Scholar 

  103. A. Shimizu, M. Uruichi, K. Yakushi, H. Matsuzaki, H. Okamoto, M. Nakano, Y. Hirao, K. Matsumoto, H. Kurata, T. Kubo, Resonance balance shift in stacks of delocalized singlet biradicals. Angew. Chem. Int. Ed. 48, 5482–5486 (2009)

    Article  Google Scholar 

  104. J. Inoue, K. Fukui, T. Kubo, S. Nakazawa, K. Sato, D. Shiomi, Y. Morita, K. Yamamoto, T. Takui, K. Nakasuji, The first detection of a Clar’s hydrocarbon, 2,6,8-tri-tertbutyltriangulene:a ground-state triplet of non-Kekulébenzenoid hydrocarbon. J. Am. Chem. Soc. 123, 12702–12703 (2001)

    Article  Google Scholar 

  105. G. Allinson, R.J. Bushby, M.V. Jesudason, J.L. Paillaud, N. Taylor, The synthesis of singlet ground state derivatives of non-Kekulé polynuclear aromatics. J. Chem. Soc. Perkin Trans. 2, 147–156 (1997)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the Roumanian Research Council, UEFISCDI, grant PCE 14/2013. MF is indebted to Professor Tamio Endo for warm cooperation and fruitful discussions. FC is thankful to Professor Yoshiyuki Kawazoe and Michael Philpott for previous cooperation in the debated field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanica Cimpoesu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ferbinteanu, M., Buta, C., Toader, A.M., Cimpoesu, F. (2017). The Spin Coupling in the Polyaromatic Hydrocarbons and Carbon-Based Materials. In: Kaneko, S., et al. Carbon-related Materials in Recognition of Nobel Lectures by Prof. Akira Suzuki in ICCE. Springer, Cham. https://doi.org/10.1007/978-3-319-61651-3_14

Download citation

Publish with us

Policies and ethics