Skip to main content

Constructions Involving Involutary Semirings and Rings

  • Chapter
  • First Online:
Refinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2188))

  • 716 Accesses

Abstract

The axioms of ring theory, when deprived of the existence of additive inverses, yield the axioms of semirings. When endowed with an additional involutary anti-automorphism (we will talk about involutary semirings), semirings will enjoy quite a fruitful interaction with Boolean inverse semigroups, the basic idea being to have the multiplications agree and the inversion map correspond to the involution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such a structure is called a K-ring in Cohn [31, Sect. 1].

  2. 2.

    Due to a conflict of notation and intuitive meaning with the notations \(\mathop{\mathrm{\mathbf{d}}}\nolimits\) and \(\mathop{\mathrm{\mathbf{r}}}\nolimits\), for the domain and the range, in inverse semigroups, we kept “\(\mathop{\mathrm{\mathbf{s}}}\nolimits\)” for the source but we changed the usual “\(\mathop{\mathrm{\mathbf{r}}}\nolimits\)” to “\(\mathop{\mathrm{\mathbf{t}}}\nolimits\)” for the target.

Bibliography

  1. Abrams, G., Aranda Pino, G.: The Leavitt path algebra of a graph. J. Algebra 293(2), 319–334 (2005). MR 2172342 (2007b:46085)

    Google Scholar 

  2. Abrams, G., Aranda Pino, G.: The Leavitt path algebras of arbitrary graphs. Houst. J. Math. 34(2), 423–442 (2008). MR 2417402 (2009h:16043)

    Google Scholar 

  3. Ara, P., Exel, R.: Dynamical systems associated to separated graphs, graph algebras, and paradoxical decompositions. Adv. Math. 252, 748–804 (2014). MR 3144248

    Google Scholar 

  4. Ara, P., Goodearl, K.R.: Leavitt path algebras of separated graphs. J. Reine Angew. Math. 669, 165–224 (2012). MR 2980456

    Google Scholar 

  5. Ara, P., Moreno, M.A., Pardo, E.: Nonstable K-theory for graph algebras. Algebr. Represent. Theory 10(2), 157–178 (2007). MR 2310414 (2008b:46094)

    Google Scholar 

  6. Ash, C.J., Hall, T.E.: Inverse semigroups on graphs. Semigroup Forum 11(2), 140–145 (1975/1976). MR 0387449 (52 #8292)

    Google Scholar 

  7. Cohn, P.M.: On the free product of associative rings. Math. Z. 71, 380–398 (1959). MR 0106918 (21 #5648)

    Google Scholar 

  8. Duncan, J., Paterson, A.L.T.: C -algebras of inverse semigroups. Proc. Edinb. Math. Soc. (2) 28(1), 41–58 (1985). MR 785726 (86h:46090)

    Google Scholar 

  9. Exel, R.: Inverse semigroups and combinatorial C -algebras. Bull. Braz. Math. Soc. (N.S.) 39(2), 191–313 (2008). MR 2419901

    Google Scholar 

  10. Exel, R.: Reconstructing a totally disconnected groupoid from its ample semigroup. Proc. Am. Math. Soc. 138(8), 2991–3001 (2010). MR 2644910

    Google Scholar 

  11. Foster, A.L.: The idempotent elements of a commutative ring form a Boolean algebra; ring-duality and transformation theory. Duke Math. J. 12, 143–152 (1945). MR 0012264 (7,1c)

    Google Scholar 

  12. Howie, J.M.: An Introduction to Semigroup Theory. London Mathematical Society Monographs, vol. 7. Academic/Harcourt Brace Jovanovich Publishers, London/New York (1976). MR 0466355 (57 #6235)

    Google Scholar 

  13. Jones, D.G., Lawson, M.V.: Graph inverse semigroups: their characterization and completion. J. Algebra 409, 444–473 (2014). MR 3198850

    Google Scholar 

  14. Lawson, M.V.: Non-commutative Stone duality: inverse semigroups, topological groupoids and C -algebras. Int. J. Algebra Comput. 22(6), 1250058, 47 pp. (2012). MR 2974110

    Google Scholar 

  15. Mesyan, Z., Mitchell, J.D., Morayne, M., Péresse, Y.H.: Topological graph inverse semigroups (2013). arXiv 1306.5388, version 1

    Google Scholar 

  16. Paterson, A.L.T.: Groupoids, Inverse Semigroups, and Their Operator Algebras. Progress in Mathematics, vol. 170. Birkhäuser Boston, Inc., Boston, MA (1999). MR 1724106 (2001a:22003)

    Google Scholar 

  17. Steinberg, B.: A groupoid approach to discrete inverse semigroup algebras. Adv. Math. 223(2), 689–727 (2010). MR 2565546 (2010k:20113)

    Google Scholar 

  18. Steinberg, B.: Simplicity, primitivity and semiprimitivity of étale groupoid algebras with applications to inverse semigroup algebras (2014). arXiv 1408.6014, version 1

    Google Scholar 

  19. Wehrung, F.: Tensor products of structures with interpolation. Pac. J. Math. 176(1), 267–285 (1996). MR 1433994 (98e:06010)

    Google Scholar 

  20. Wehrung, F.: The dimension monoid of a lattice. Algebra Univers. 40(3), 247–411 (1998). MR 1668068 (2000i:06014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wehrung, F. (2017). Constructions Involving Involutary Semirings and Rings. In: Refinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups. Lecture Notes in Mathematics, vol 2188. Springer, Cham. https://doi.org/10.1007/978-3-319-61599-8_6

Download citation

Publish with us

Policies and ethics