Skip to main content

Type Theory of Special Classes of Boolean Inverse Semigroups

  • Chapter
  • First Online:
Refinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2188))

  • 681 Accesses

Abstract

While Theorem 4.8.9 implies that the type monoid of a Boolean inverse semigroup S can be any countable conical refinement monoid, there are situations in which the structure of S impacts greatly the one of \(\mathop{\mathrm{Typ}}\nolimits S\). A basic illustration of this is given by the class of AF inverse semigroups , introduced in Lawson and Scott [77], which is the Boolean inverse semigroup version of the class of AF C*-algebras. Another Boolean inverse semigroup version of a class of C*-algebras, which we will not consider here, is given by the Cuntz inverse monoids studied in Lawson and Scott [77, § 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Those inverse semigroups are called semisimple in the first version of Lawson and Scott [77], which conflicts with the usual meaning of that word in ring theory. We chose instead to introduce semisimplicity through Definition 3.7.5.

  2. 2.

    The definition of B(G) given at the bottom of Wehrung [122, p. 272] is misformulated. Namely, since G has no least element unless it is trivial, x ∖ ⊥ does not belong to B G as a rule, so xx ∖ ⊥ does not embed D G into B G . What matters here is that the elements of B G are exactly the finite (orthogonal) joins of elements of the form ba, where (a, b) ∈ G [2]. The correct definition of B G = B(G) that ensures this is given by (5.2.2).

  3. 3.

    I believe that Lindenbaum and Tarski’s proof, as printed in [109], yields only that the partial commutative monoid B∕​​∕G satisfies the implication \(\boldsymbol{a} + 2\boldsymbol{c} =\boldsymbol{ b} +\boldsymbol{ c}\ \Rightarrow \ \boldsymbol{ a} +\boldsymbol{ c} \leq ^{+}\boldsymbol{b}\). However, by Corollary 2.7.7, this still yields the desired conclusion.

  4. 4.

    Although [109, Theorem 16.10] is stated there for Abelian G, it is mentioned on [109, p. 227] that the only consequence of abelianness that is used there is a specific (and unnamed in [109]) growth condition on group words. This condition is, of course, exponential boundedness.

Bibliography

  1. Anderson, M., Feil, T.: Lattice-Ordered Groups: An introduction. Reidel Texts in the Mathematical Sciences. D. Reidel Publishing Co., Dordrecht (1988). MR 937703 (90b:06001)

    Google Scholar 

  2. Banach, S.: Un théorème sur les transformations biunivoques. Fund. Math. 6(1), 236–239 (1924) (French)

    Google Scholar 

  3. Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et Anneaux Réticulés. Lecture Notes in Mathematics, vol. 608. Springer, Berlin/New York (1977). MR 0552653 (58 #27688)

    Google Scholar 

  4. Dobbertin, H.: Vaught measures and their applications in lattice theory. J. Pure Appl. Algebra 43(1), 27–51 (1986). MR 862871 (87k:06032)

    Google Scholar 

  5. Effros, E.G., Handelman, D.E., Shen, C.L.: Dimension groups and their affine representations. Am. J. Math. 102(2), 385–407 (1980). MR 564479 (83g:46061)

    Google Scholar 

  6. Elliott, G.A.: On the classification of inductive limits of sequences of semisimple finite-dimensional algebras. J. Algebra 38(1), 29–44 (1976). MR 0397420 (53 #1279)

    Google Scholar 

  7. Goodearl, K.R.: von Neumann Regular Rings, 2nd edn. Robert E. Krieger Publishing Co., Inc., Malabar, FL (1991). MR 1150975 (93m:16006)

    Google Scholar 

  8. Goodearl, K.R., Handelman, D.E.: Tensor products of dimension groups and K 0 of unit-regular rings. Can. J. Math. 38(3), 633–658 (1986). MR 845669 (87i:16043)

    Google Scholar 

  9. Grätzer, G.: Lattice Theory: Foundation. Birkhäuser/Springer, Basel AG, Basel (2011). MR 2768581 (2012f:06001)

    Google Scholar 

  10. Grillet, P.-A.: Directed colimits of free commutative semigroups. J. Pure Appl. Algebra 9(1), 73–87 (1976/1977). MR 0422461 (54 #10450)

    Google Scholar 

  11. Kado, J.: Unit-regular rings and simple self-injective rings. Osaka J. Math. 18(1), 55–61 (1981). MR 609977 (82h:16008)

    Google Scholar 

  12. Kudryavtseva, G., Lawson, M.V., Lenz, D.H., Resende, P.: Invariant means on Boolean inverse monoids. Semigroup Forum 92(1), 77–101 (2016). MR 3448402

    Google Scholar 

  13. Lawson, M.V.: Inverse Semigroups: The Theory of Partial Symmetries. World Scientific Publishing Co., Inc., River Edge, NJ (1998). MR 1694900 (2000g:20123)

    Google Scholar 

  14. Lawson, M.V.: Non-commutative Stone duality: inverse semigroups, topological groupoids and C -algebras. Int. J. Algebra Comput. 22(6), 1250058, 47 pp. (2012). MR 2974110

    Google Scholar 

  15. Lawson, M.V., Scott, P.: AF inverse monoids and the structure of countable MV-algebras. J. Pure Appl. Algebra 221(1), 45–74 (2017). MR 3531463

    Google Scholar 

  16. Moreira Dos Santos, C.: A refinement monoid whose maximal antisymmetric quotient is not a refinement monoid. Semigroup Forum 65(2), 249–263 (2002). MR 1911728 (2003c:20074)

    Google Scholar 

  17. Mundici, D.: Interpretation of AF C -algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65(1), 15–63 (1986). MR 819173 (87k:46146)

    Google Scholar 

  18. Rosenblatt, J.M.: Invariant measures and growth conditions. Trans. Am. Math. Soc. 193, 33–53 (1974). MR 0342955 (49 #7699)

    Google Scholar 

  19. Tarski, A.: Cardinal Algebras. With an Appendix: Cardinal Products of Isomorphism Types, by Bjarni Jónsson and Alfred Tarski. Oxford University Press, New York, NY (1949). MR 0029954 (10,686f)

    Google Scholar 

  20. Truss, J.K.: The failure of cancellation laws for equidecomposability types. Can. J. Math. 42(4), 590–606 (1990). MR 1074225 (91k:03147)

    Google Scholar 

  21. Wagon, S.: The Banach-Tarski Paradox. Encyclopedia of Mathematics and Its Applications, vol. 24. Cambridge University Press, Cambridge (1985). With a foreword by Jan Mycielski. MR 803509 (87e:04007)

    Google Scholar 

  22. Wehrung, F.: The universal theory of ordered equidecomposability types semigroups. Can. J. Math. 46(5), 1093–1120 (1994). MR 1295133 (95i:06025)

    Google Scholar 

  23. Wehrung, F.: The dimension monoid of a lattice. Algebra Univers. 40(3), 247–411 (1998). MR 1668068 (2000i:06014)

    Google Scholar 

  24. Wehrung, F.: Non-measurability properties of interpolation vector spaces. Israel J. Math. 103, 177–206 (1998). MR 1613568 (99g:06023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wehrung, F. (2017). Type Theory of Special Classes of Boolean Inverse Semigroups. In: Refinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups. Lecture Notes in Mathematics, vol 2188. Springer, Cham. https://doi.org/10.1007/978-3-319-61599-8_5

Download citation

Publish with us

Policies and ethics