Skip to main content

Image-Guided Radiation Therapy

  • Chapter
  • First Online:
An Introduction to Medical Physics

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The goal of radiation therapy treatment is to deliver the therapeutic dose to target volumes while reduce the radiation exposure to the adjacent normal structures. In the past, a large three-dimensional planning margin was utilized to account for geometric and setup uncertainties, which resulted in unnecessary radiation doses to the surrounding normal tissues. Since the late 1990s, intensity-modulated radiation therapy (IMRT), which delivers highly conformal dose distributions to the target, has been widely adopted as standard treatment for treatment sites such as the head and neck, prostate, etc. (Butler et al. 1999; Manning et al. 2001; Zelefsky et al. 2000; De Meerleer et al. 2000). IMRT enables a more precise conformal radiation dose distribution to the target area without increasing radiation doses to the normal tissue. To translate the advantages of IMRT into better tumor control and reduction of treatment-related toxicity, more accurate and reproducible patient setup is crucial (Qi et al. 2013a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adler JR Jr et al (1997) The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 69:124–128

    Article  Google Scholar 

  • Antonuk LE et al (1996) Megavoltage imaging with a large-area, flat-panel, amorphous silicon imager. Int J Radiat Oncol Biol Phys 36:661–672

    Article  Google Scholar 

  • Antonuk LE et al (1998) Initial performance evaluation of an indirect-detection, active matrix flat-panel imager (AMFPI) prototype for megavoltage imaging. Int J Radiat Oncol Biol Phys 42:437–454

    Article  Google Scholar 

  • Artignan X, Smitsmans M, Lebesque JV et al (2004) Online ultrasound image guidance for radiotherapy of prostate cancer: impact of image acquisition on prostate displacement. Int J of Radiat Oncol Biol Phys 59(2:595–601

    Article  Google Scholar 

  • Bailey DL, Townsend DW, Valk PE (2005) Positron emission tomography: basic sciences. Secaucus, Springer-Verlag. Isbn: 1–85233–798-2

    Google Scholar 

  • Baily NA, Horn RA, Kampp TD (1980) Fluoroscopic visualization of megavoltage therapeutic x ray beams. Int J Radiat Oncol Biol Phys 6:935–939

    Article  Google Scholar 

  • Balter JM, Ten Haken RK, Lawrence TS, Lam KL, Robertson JM (1996) Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing. Int J Radiat Oncol Biol Phys 36(1):167–174

    Article  Google Scholar 

  • Balter JM, Wright JN, Newell LJ et al (2005) Accuracy of a wireless localization system for radiotherapy. Int J Radiat Oncol Biol Phys 61:933–937

    Article  Google Scholar 

  • Barry A, Loredana M, Eva B (2012) Biomedical physics in radiotherapy for cancer. CSIRO Publishers, Collingwood

    Google Scholar 

  • BATCAM (n.d.) Multi-probe image-guided radiation therapy. http://www.nomos.com/pdf/Batcam_bro_03.pdf

  • Bel A, van Herk M, Bartelink H, Lebesque JV (1993) A verification procedure to improve patient set-up accuracy using portal images. Radiother Oncol 29(2):253–260. PubMed PMID: 8310153

    Article  Google Scholar 

  • Bissonnette JP, Balter PA, Dong L, Langen KM, Lovelock DM, Miften M, Moseley DJ, Pouliot J, Sonke JJ, Yoo S (2012) Quality assurance for image-guided radiation therapy utilizing CT-based technologies: a report of the AAPM TG-179. Med Phys 39(4):1946–1963

    Article  Google Scholar 

  • B-mode Acquisition and Targeting (BAT) Ultrasound for image-guided radiotherapy. Ramer R, May 13, 2005. http://rii.uthscsa.edu/personalpages/lancaster/DI2_Projects_2005/BAT.pdf

  • de Boer HC, van Os MJ, Jansen PP, Heijmen BJ (2005) 17. Application of the no action level (NAL) protocol to correct for prostate motion based on electronic portal imaging of implanted markers. Int J Radiat Oncol Biol Phys 61(4):969–983

    Article  Google Scholar 

  • Borgefors G (1988) Hierarchical chamfer matching: a parameter edge matching algorithm. IEEE Trans Pattern Anal Mach Intell 10:849–865

    Article  Google Scholar 

  • Brock KK, Dawson LA, Sharpe MB et al (2006) Feasibility of a novel deformable image registration technique to facilitate classification, targeting, and monitoring of tumor and normal tissue. Int J Radiat Oncol Biol Phys 64(4):1245–1254

    Article  Google Scholar 

  • Butler EB, Teh BS, 3rd Grant WH et al (1999) SMART (simultaneous modulated accelerated radiation therapy) boost: a new accelerated fractionation schedule for the treatment of head and neck cancer with intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys 45:21–32

    Article  Google Scholar 

  • Caldwell CB, Mah K, Skinner M, Danjoux CE (2003) Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int J Radiat Oncol Biol Phys 55(5):1381–1393

    Article  Google Scholar 

  • Castadot P, Geets X, Lee JA, Christian N, Gregoire V (2010a) Assessment by a deformable registration method of the volumetric and positional changes of target volumes and organs at risk in pharyngo-laryngeal tumors treated with concomitant chemo-radiation. Radiat Oncol 95:209–217

    Article  Google Scholar 

  • Castadot P, Lee JA, Geets X, Gregoire V et al (2010b) Adaptive radiotherapy of head and neck cancer. Seminar Radiat Oncol 20:84–93

    Article  Google Scholar 

  • Chaiken, Lisa MD (2005) B-Mode acquisition and targeting stereotactic ultrasound: the ultimate in Tumor localization for prostate cancer. Cancer Care Center technologies. 13 May 2005. http://www.cancercareconsultants.com/technologies/articles/bmode-chaiken-article.htm

  • Chan M, Yang J, Song Y et al (2011) Evaluation of imaging performance of major image guidance systems. Biomed imaging Interv J 7:1–7

    Google Scholar 

  • Chen GT, Kung JH, Beaudette KP (2004) Artifacts in computed tomography scanning of moving objects. Semin Radiat Oncol 14(1):19–26

    Article  Google Scholar 

  • Chen AM, Daly ME, Cui J et al (2014) Clinical outcomes among patients with head and neck cancer treated by intensity-modulated radiotherapy with and without adaptive preplanning. Head Neck 1:1–6

    Google Scholar 

  • Cheng CW, Wong J, Grimm L, Chow M, Uematsu M, Fung M (2003) Commissioning and clinical implementation of a sliding gantry CT scanner installed in an existing treatment room and early clinical experience for precise tumor localization. Am J Clin Oncol 26:e28–e36

    Google Scholar 

  • Chernak ES, Antunez RA, Jelden GL et al (1975) The use of computed tomography for radiation therapy treatment planning. Radiology 117:613

    Article  Google Scholar 

  • Coste-Manière E, Olender D, Kilby W, Schulz RA (n.d.) Robotic whole body stereotactic radiosurgery: clinical advantages of the cyberKnife® Integrated system. Reprinted by permission from The International Journal of Medical Robotics and Computer Assisted Surgery. http://www.robotics.org/content-detail.cfm/Industrial-Robotics-News/Robotic-Whole-Body-Stereotactic-Radiosurgery: Clinical-Advantages-of-the-CyberKnife®-Integrated-System/content_id/1085

  • Dawson LA, Sharpe MB (2006) Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol:848–858

    Google Scholar 

  • De Meerleer GO, Vakaet LA, De Gersem WR, De Wagter C, De Naeyer B, De Neve W (2000) Radiotherapy of prostate cancer with or without intensity modulated beams: a planning comparison. Int J Radiat Oncol Biol Phys 47:639–648

    Article  Google Scholar 

  • Dieterich S, Pawlicki T (2008) Cyberknife image-guided delivery and quality assurance. Int J Radiat Oncol Biol Phys 71:S126–S130

    Article  Google Scholar 

  • ExacTrac, Image-guided radiotherapy BrainLab (n.d.) https://www.brainlab.com/wp-content/uploads/2014/01/Brochure-ExacTrac.pdf

  • Fakiris AJ, McGarry RC, Yiannoutsos CT, Papiez L et al (2009) Stereotactic body radiation therapy for early-stage non–small-cell lung carcinoma: four-year results of a prospective phase II study. Int J Radiat Oncol Biol Phys 75(3):677–682

    Article  Google Scholar 

  • Falco T, Wang H, Fallone BG (1998) Preliminary study of a metal/a-se-based portal detector. Med Phys 25:814–823

    Article  Google Scholar 

  • Feldkamp IA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc AmA 1:612–619

    Article  ADS  Google Scholar 

  • Fitzpatrick JM, West B (2001) The distribution of target registration error in rigid-body point-based registration. IEEE Trans Med Imaging 20:917–927

    Article  Google Scholar 

  • Ford EC, Mageras GS, Yorke E, Ling CC (2003) Respiration-correlated spiral CT: a method of measuring respiratory-induced anatomic motion for radiation treatment planning. Med Phys 30(1):88–97

    Article  Google Scholar 

  • Forrest LJ, Mackie TR, Ruchala K, Turek M, Kapatoes J, Jaradat H, Hui S, Balog J, Vail DM, Mehta MP (2004) The utility of megavoltage computed tomotherapy images from a helical tomotherapy system for setup verification purposes. Int J Radiat Oncol Biol Phys 60(5):1639–1644

    Article  Google Scholar 

  • Gerszten PC, Ozhasoglu C, Burton SA, Vogel WJ, Atkins BA, Kalnicki S, Welch WC (2003) Cyberknife frameless real-time image-guided stereotactic radiosurgery for the treatment of spinal lesions. Int J of Radiat Oncol Bio Phys 57(2):S370–S371

    Article  Google Scholar 

  • Gibbs IC (2006) Frameless image-guided intracranial and extracranial radiosurgery using the Cyberknifeâ„¢ robotic system. Cancer Radiother 10:283–287

    Article  Google Scholar 

  • Goitein M, Busse J et al (1975) Immobilization error: some theoretical considerations. Radiology 117:407–12. Boyer AL et al (1992) A review of electronic portal imaging devices (EPIDs). Med Phys 19:1–16

    Google Scholar 

  • Goshtasby A (2006) Ardeshir, 2-D and 3-D image registration for medical, remote sensing, and industrial applications, Wiley press, 2005. Int J Radiat Oncol Biol Phys 64:1245–1254

    Article  Google Scholar 

  • Hanley J, Debois MM, Mah D, Mageras GS, Raben A, Rosenzweig K et al (1999) Deep inspiration breath-hold technique for lung tumors the potential value of target immobilization and reduced lung density in dose escalation. Int J Radiat Oncol Biol Phys 45:603–611

    Article  Google Scholar 

  • Herman MG, Kruse JJ, Hagness CR (2000) Guide to clinical use of electronic portal imaging. JACMP 1(2):38–57

    Article  Google Scholar 

  • Herman MG, Balter JM, Jaffray DA, McGee KP, Munro P et al (n.d.) Clinical use of electronic portal imaging: report of AAPM radiation therapy committee task group 58. Med Phys 28(5):712–737

    Google Scholar 

  • Hollingworth W, Todd CJ, Bell MI, Arafat Q, Girling S, Karia KR, Dixon AK (2000) The diagnostic and therapeutic impact of MRI: an observational multi-centre study. Clin Radiol 55(11):825–831

    Article  Google Scholar 

  • Hong TS, Welsh JS, Ritter MA, Harari PM et al (1999) Megavoltage computed tomography- an emerging tool for image-guided radiotherapy. Am J of Clinical Oncol 30(6):617–623

    Article  Google Scholar 

  • Hong TS, Tome WA, Chappell RJ et al (2005) The impact of daily setup variations on head and neck intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys 61:779–788

    Article  Google Scholar 

  • Houghton F, Benson RJ, Tudor GST et al (2009) An assessment of action levels in imaging strategies in head and neck cancer using TomoTherapy. Are our margins adequate in the absence of image guidance? Clin Oncol 21:720–727

    Article  Google Scholar 

  • Hunt MA, Schultheiss TE, Desobry GE, Hakki M, Hanks GE (1995) An evaluation of setup uncertainties for patients treated to pelvic sites. Int J Radiat Oncol Biol Phys 32:227–233

    Article  Google Scholar 

  • http://www.cyberknife.com/uploadedFiles/CyberKnife_Overview/500929.A_CyberKnife_Patient_Brochure_FINAL.pdf (n.d.)

  • Jaffray DA, Bissonnette JP, Craig T (1999) X-ray imaging for verification and localization in radiation therapy in modern technology of radiation oncology (suppl. 1). Modern technology of radiation oncology. Medical Physics Pub, Madison, WI. Isbn: 0–944838–38-3

    Google Scholar 

  • Jin JY, Yin FF, Tenn S, Medin PM, Solberg TD (2008) Use of the brainlab exacTrac X-ray 6D system in image-guided radiotherapy. Med Dosim 33:124–134

    Article  Google Scholar 

  • Kapatoes JM, Olivera GH, Reckwerdt PJ, Fitchard EE, Schloesser EA, Mackie TR (1999) Delivery verification in sequential and helical tomotherapy. Phys Med Biol 4:1815–1841

    Article  Google Scholar 

  • Kapatoes JM, Olivera GH, Ruchala KJ, Smilowitz JB, Reckwerdt PJ, Mackie TR (2001a) A feasible method for clinical delivery verification and dose reconstruction in tomotherapy. Med Phys 28(4):528–542

    Article  Google Scholar 

  • Kapatoes JM, Olivera GH, Balog JP, Keller H, Reckwerdt PJ, Mackie TR (2001b) On the accuracy and effectiveness of dose reconstruction for tomotherapy. Phys Med Biol 46:943–966

    Article  Google Scholar 

  • Keall PJ, Kini VR, Vedam SS, Mohan R (2002) Potential radiotherapy improvements with respiratory gating. Australas Phys Eng Sci Med 25:1–6

    Article  Google Scholar 

  • Keall PJ, Mageras GS, Balter JM et al (2006) The management of respiratory motion in radiation oncology report of AAPM task group 76. Med Phys 33:3874–3900

    Article  Google Scholar 

  • Kijewski PK, Bjarngard BE (1978) The use of computed tomography data for radiotherapy dose calculations. Int J Radiat Oncolo Biol Phys 4:429

    Article  Google Scholar 

  • Killoran JH, Kooy HM, Gladstone DJ, Welte FJ, Beard CJ (1997) A numerical simulation of organ motion and daily setup uncertainties: implications for radiation therapy. Int J Radiat Oncol biol Phys 37:213–221

    Article  Google Scholar 

  • Kim DJ, Murray BR, Halperin R, Roa WH (2001) Held-breath self-gating technique for radiotherapy of non-small-cell lung cancer: a feasibility study. Int J Radiat Oncol Biol Phys 49:43–49

    Article  Google Scholar 

  • King CR, Freeman D, Kaplan I, Fuller D, Bolzicco G, Collins S, Meier R, Wang J, Kupelian P, Steinberg M, Katz A (2013) Stereotactic body radiotherapy for localized prostate cancer: pooled analysis from a multi-institutional consortium of prospective phase II trials. Radiother Oncol 109:217–221

    Article  Google Scholar 

  • Kubo HD, Hill BC (1996) Respiration gated radiotherapy treatment: a technical study. Phys Med Biol 41:83–91

    Article  Google Scholar 

  • Kuriyama K, Onishi H, Sano N et al (2003) A new irradiation unit constructed of self-moving gantry-CT and Linac. Int J Radiat Oncolo Biol Phys 55:428–435

    Article  Google Scholar 

  • Kutcher GJ et al (1994) Comprehensive QA for radiation oncology: report of AAPM radiation therapy committee task group 40. Med Phys 21:581–618

    Article  Google Scholar 

  • Langen KM, Pouliot J, Anezinos C, Aubin M, Gottschalk AR, Hsu IC, Lowther D, Liu YM, Shinohara K, Verhey LJ, Weinberg V, 3rd Roach M (2003) Evaluation of ultrasound-based prostate localization for image-guided radiotherapy. Int J Radiat Oncol Biol Phys 57:635–644

    Article  Google Scholar 

  • Langen KM, Meeks SL, Poole DO et al (2005) The use of megavoltage CT (MVCT) images for dose recomputations. Phys Med Biol 50:4259–4276

    Article  Google Scholar 

  • Lax H, Blomgren I, Naslund, Svanstrom R (1994) Stereotactic radiotherapy of malignancies in the abdomen: methodological aspects. Acta Oncol 33:677–683

    Article  Google Scholar 

  • Lee C, Langen KM, Lu W et al (2008) Assessment of parotid gland dose changes during head and neck cancer radiotherapy using daily megavoltage computed tomography and deformation image registration. Int J Radiat Oncol Biol Phys 71:1563–1571

    Article  Google Scholar 

  • Leong J (1986) Use of digital fluoroscopy as an on-line verification device in radiation therapy. Phys Med Biol 31:985–992

    Article  Google Scholar 

  • Li AX, Stepaniak C, Gore E (2006) Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system. Med Phys 33:145–154

    Article  Google Scholar 

  • Li XA, Qi XS, Pitterle M (2007) Interfractional variations in patient setup and anatomic change assessed by daily computed tomography. Int J Radiat Oncol Biol Phys 68:581–591

    Article  Google Scholar 

  • Lo SS, Fakiris AJ, El C et al (2010) Stereotactic body radiation therapy: a novel treatment modality. Nat Rev Clin Oncol 7(1):44–54

    Article  Google Scholar 

  • Ma CM, Paskalev K (2006) In-room CT techniques for image-guided radiation therapy. Med Dos 31:30–39

    Article  Google Scholar 

  • Mageras GS, Pevsner A, Yorke ED et al (2004) Measurement of lung tumor motion using respiration-correlated CT. Int J Radiat Oncol Biol Phys 60:933–941

    Article  Google Scholar 

  • Magnetic resonance, a critical peer-reviewed introduction. European Magnetic Resonance Forum. Retrieved 16 Nov 2013

    Google Scholar 

  • Manning MA, Wu Q, Cardinale RM et al (2001) The effect of setup uncertainty on normal tissue sparing with IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys 51:1400–1409

    Article  Google Scholar 

  • Marks JE, Haus AG, Sutton HG, Griem ML (1974) Localization error in the radiotherapy of Hodgkin’s disease and malignant lymphoma with extended mantle fields. Cancer 34:83–90

    Article  Google Scholar 

  • Meeks SL, Harmon JF, Langen KM, Willoughby TR, Wagner TH, Kupelian PA (2005) Performance characterization of megavoltage computed tomography imaging on a helical tomotherapy unit. Med Phys 32(8):2673–2681

    Article  Google Scholar 

  • Merboldt K, Hanicke W, Frahm J (1969) Self-diffusion NMR imaging using stimulated echoes. J Magn Reson 64(3):479–486

    ADS  Google Scholar 

  • Morin O, Gillis A, Chen J et al (2005) Megavoltage cone-beam CT: system description and clinical applications. Med Dosim 31:51–61

    Article  Google Scholar 

  • Moseley DJ, Pouliot J, Sonke JJ, Yoo S (2012) Quality assurance for image-guided radiation therapy utilizing CT-based technologies: a report of the AAPM TG-179. Med Phys 39(4):1946–1963. doi:10.1118/1.3690466

    Article  Google Scholar 

  • Mundt AJ, Roeske JC (2006) In: Bortfeld T, Schmidt-Ullrich R (eds) Image-guided radiation therapy. Springer, Berlin Heidelberg

    Google Scholar 

  • Munro P (1995) Portal imaging technology: past. Present and Future Semin Radiat Oncol 5:115–133

    Article  Google Scholar 

  • Munro P, Rawlinson JA, Fenster A (1990) A digital fluoroscopic imaging device for radiotherapy localization. Int J Radiat Oncol Biol Phys 18:641–649

    Article  Google Scholar 

  • Murphy MJ (2004) Tracking moving organs in real time. Semin Radiat Oncol 14:91–100

    Article  Google Scholar 

  • Murphy MJ, Balter J, Balter S et al (2007) The management of imaging dose during image-guided radiotherapy: report of the AAPM task group 75. Med Phys 34:4041–4063

    Article  Google Scholar 

  • Murphy MJ, Balter J, Balter S, BenComo JA, Das IJ et al (n.d.) The management of imaging dose during image-guided radiotherapy: report of the AAPM task group 75. Med Phys 34(10):4041–4063

    Google Scholar 

  • National radiotherapy implementation group report (2012) Image guided Radiotherapy (IGRT) guidance for implementation and use

    Google Scholar 

  • Negoro Y, Nagata Y, Aoki T, Mizowaki T, Araki N et al (2001) The effectiveness of an immobilization device in conformal radiotherapy for lung tumor: reduction of respiratory tumor movement and evaluation of the daily setup accuracy. Int J Radiat Oncol Biol Phys 50:889–898

    Article  Google Scholar 

  • Nehmeh SA, Erdi YE, Rosenzweig KE, Schoder H, Larson SM, Squire OD, Humm JL (2003) Reduction of respiratory motion artifacts in PET imaging of lung cancer by respiratory correlated dynamic PET: methodology and comparison with respiratory gated PET. J Nucl Med 44(10):1644–1648

    Google Scholar 

  • Neicu T, Shirato H, Seppenwoolde Y, Jiang SB (2003) Synchronized moving aperture radiation therapy (SMART): average tumour trajectory for lung patients. Phys Med 48:587–598

    Google Scholar 

  • Neylon J, Qi XS, Sheng K, Staton R, Pukala J, Manon R, Low DA, Kupelian P, Santhanam A (2015) A GPU based high-resolution multi-level biomechanical head and neck model for validating deformable image registration frameworks. Med Phys 42(1):232. doi:10.1118/1.4903504

    Article  Google Scholar 

  • Nishi T, Nishimura Y, Shibata T, Tamura M, Nishigaito N, Okumura M (2013) Volume and dosimetric changes and initial clinical experience of a two-step adaptive intensity modulated radiation therapy (IMRT) scheme for head and neck cancer. Radiother Oncol 106:85–89

    Article  Google Scholar 

  • Nuyttens JJ, van de Pol M (2012) The CyberKnife radiosurgery system for lung cancer. Expert Rev Med Devices 9(5):465–475

    Article  Google Scholar 

  • Operator’s manual for ViewRay system 3.5 (2014), Document No. L-0009

    Google Scholar 

  • Pan T (2005) Comparison of helical and cine acquisitions for 4DCT imaging with multi-slice CT. Med Phys 32:627–634

    Article  Google Scholar 

  • Pan T, Lee T, Rietzel E et al (2004) 4DCT imaging of a volume influenced by respiratory motion on multiple-slice CT. Med Phys 31:333–340

    Article  Google Scholar 

  • Peng C, Kainz K, Lawton C, Li XA (2008) A comparison of daily megavoltage CT and ultrasound image guided radiation therapy for prostate cancer. Med Phys 35(12):5619–5628

    Article  Google Scholar 

  • Pluim JP, Maintz JBA, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22:986–1004

    Article  MATH  Google Scholar 

  • Pouliot J, Bani-Hashemi A, Chen J et al (2005) Low-dose megavolt- age cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys 61:552–560

    Article  Google Scholar 

  • Prescribing, recording and reporting photon beam therapy (1999) (Supplement to ICRU Report 50):62

    Google Scholar 

  • Qi XS, Hu A, Lee SP, Lee P, DeMarco J, Li XA, Steinberg ML, Kupelian P, Low D (2013a) Assessment of interfraction patient setup for head-and-neck cancer intensity modulated radiation therapy using multiple computed tomography-based image guidance. Int J Radiat Oncol Biol Phys 86(3):432–439

    Article  Google Scholar 

  • Qi XS, Wu ST, Newman F, Li AX, Hu AY (2013b) Evaluation of interfraction patient setup errors for image-guided prostate and head-and-neck radiotherapy using kilovoltage cone beam and megavoltage fan beam computed tomography. J Radiotherapy in Practice 12:334–343

    Article  Google Scholar 

  • Qi XS, Santhanam A, Neylon J et al (2015) Near real-time assessment of anatomic and dosimetric variations for head-and-neck radiotherapy via a GPU-based dose deformation framework. Int J Radiat Oncol Biol Phys 92(2):415–422

    Article  Google Scholar 

  • Rietzel E, Pan T, Chen GT (2005) Four-dimensional computed tomography: image formation and clinical protocol. Med Phys 32(4):874–889

    Article  Google Scholar 

  • Ruchala K, Olivera GH, Kapatoes J (2002) Limited-data image registration for radiotherapy positioning and verification. Int J Radiat Oncol Biol Phys 54:592–605

    Article  Google Scholar 

  • Schwartz DL, Ford EC, Rajendran J et al (2005) FDG-PET/CT-guided intensity modulated head and neck radiotherapy: a pilot investigation. Head Neck 27(6):478–487

    Article  Google Scholar 

  • Schwartz DL, Garden AS, Thomas J, Chen YP, Zhang YB et al (2012) Adaptive radiotherapy for head-and-neck cancer: initial clinical outcomes from a prospective trial. Int J Radiat Oncol Biol Phys 83:986–993

    Article  Google Scholar 

  • Shirato H, Shimizu S, Kitamura K, Nishioka T et al (2000) Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys 48:435–442

    Article  Google Scholar 

  • Spratt DE, Diaz R, McElmurray J et al (2010) Impact of FDG PET/CT on delineation of the gross tumor volume for radiation planning in non-small cell lung cancer. Clin Nucl Med 35(4):237–243

    Article  Google Scholar 

  • Srinivasan K, Mohammadi M, Shepherd J (2014) Applications of Linac-mounted kilovoltage cone-beam computed tomography in modern radiation therapy: a review. Pol J Radiol 79:181–193

    Article  Google Scholar 

  • Stutzel J, Oelfke U, Nill S (2008) A quantitative image quality comparison of four differernt image guided radiotherapy devices. Radiother Oncol 86:20–24

    Article  Google Scholar 

  • Taylor DG, Bushell MC (1985) The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys Med Biol 30(4):345–349

    Article  Google Scholar 

  • Thieke C, Malsch U, Schlegel W, Debus J, Huber P, Bendl R, Thilmann C (2006) Kilovoltage CT using a Linac-CT scanner combination. Br J Radiol 79:S79–S86

    Article  Google Scholar 

  • Uematsu M, Fukui T, Shioda A et al (1996) A dual computed tomography and linear accelerator unit for stereotactic radiation therapy: a new approach without cranially fixated stereotactic frame. Int J Radiat Oncol Biol Phys 35:587–592

    Article  Google Scholar 

  • Underberg RWM, Lagerwaard FJ, Slotman BJ et al (2005) Benefits of respiration-gated stereotactic radiotherapy for stage I lung cancer—an analysis of 4DCT data sets. Int J Radiat Oncol Biol Phys 62:554–560

    Article  Google Scholar 

  • Verellen D, Ridder MD, Storme G (2008) A (short) history of imaged-guided radiotherapy. Radiother Oncol 86:4013

    Article  Google Scholar 

  • ViewRay system Brochure (n.d.) http://www.viewray.com/product/L0013_RevCMRIdian+Overiew+Brochure-2.pdf

  • Wong W, Sharpe MB, Jaffray DA, Kini VR, et al The use of active breathing control (ABC) to reduce margin for breathing motion., Int J Radiat Oncol Biol Phys 1999;44:911–919

    Google Scholar 

  • Wong JR, Grimm L, Uematsu M, et al (2001) Treatment of lung tumor with stereotactic radiation therapy using the world’s first PRIMATOM system: a case report. Electromedia 69:127–130

    Google Scholar 

  • Wu Q, Chi Y, Chen P, Krauss J, Yan D, Martinez A et al (2009) Adaptive replanning strategies accounting for shrinkage in head and neck IMRT. Int J Radiat Oncol Biol Phys 75:924–932

    Article  Google Scholar 

  • Xing L, Thorndyke B, Schreibmann E et al (2006) Overview of image-guided radiation therapy. Med Dosim 31:91–112

    Article  Google Scholar 

  • Yan D (2008) Developing quality assurance processes for image-guided adaptive radiation therapy. Int J Radiat Oncol Biol Phys 71:S28–S32

    Article  Google Scholar 

  • Yan D (2010) Adaptive radiotherapy: merging principle into clinical practice. Semin Radiat Oncol 20:79–83

    Article  Google Scholar 

  • Yang Y, Schreibmann E, Li T, Wang C, Xing L (2007) Evaluation of on-board kV cone -beam CT (CBCT)-based dose calculation. Phys Med Biol 52(3):685–705

    Article  Google Scholar 

  • Zelefsky MJ, Fuks Z, Happersett L, Lee HJ et al (2000 Jun) Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiother Oncol 55:241–249

    Article  Google Scholar 

  • Zitova B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21:977–1000

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Sharon Qi PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qi, X.S. (2017). Image-Guided Radiation Therapy. In: Maqbool, M. (eds) An Introduction to Medical Physics. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-61540-0_5

Download citation

Publish with us

Policies and ethics