Skip to main content

Results and Discussion: Melt Electrospinning

  • Chapter
  • First Online:
Polypropylene Nanofibers

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 554 Accesses

Abstract

This chapter discusses the results and discussion of the experiments done on the melt electrospinning to fabricate nanofibres and their characterisation. Uses of additives such as rheology modifiers, to reduce the melt viscosity and conductivity enhancers, to increase the electrical conductivity in melt electrospinning helped in the fabrication of nanofibres. The use of polyethylene glycol (PEG) and polydimethylsiloxane (PDMS) reduced the melt viscosity; whereas the use of sodium oleate (SO) and sodium chloride (NaCl) improved the electrical conductivity. The results obtained from various characterisation techniques such as fibre morphology, thermal, crystalline, and mechanical properties; and surface wettability are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee S, Kay Obendorf S (2006) Developing protective textile materials as barriers to liquid penetration using melt electrospinning. J Appl Polym Sci 102(4):3430–3437

    Google Scholar 

  2. Dalton PD, Grafahrend D, Klinkhammer K, Klee D, Möller M (2007) Electrospinning of polymer melts: phenomenological observations. Polymer 48(23):6823–6833

    Article  Google Scholar 

  3. Dalton P, Lleixà Calvet J, Mourran A, Klee D, Möller M (2006) Melt electrospinning of poly (ethylene glycol block caprolactone). Biotechnol J 1(9):998–1006

    Article  Google Scholar 

  4. Zhou H, Green T, Joo Y (2006) The thermal effects on electrospinning of polylactic acid melts. Polymer 47(21):7497–7505

    Article  Google Scholar 

  5. Dalton P, Grafahrend D, Klinkhammer K, Klee D, Möller M (2007) Electrospinning of polymer melts: phenomenological observations. Polymer 48(23):6823–6833

    Article  Google Scholar 

  6. Ogata N, Shimada N, Yamaguchi S, Nakane K, Ogihara T (2007) Melt electrospinning of poly (ethylene terephthalate) and polyalirate. J Appl Polym Sci 105(3):1127–1132

    Article  Google Scholar 

  7. Larrondo L, St John Manley R (1981) Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet. J Polym Sci Polym Phys Ed 19(6):921–932

    Google Scholar 

  8. Lee S, Kay Obendorf S (2006) Developing protective textile materials as barriers to liquid penetration using melt electrospinning. J Appl Polym Sci 102(4):3430–3437

    Article  Google Scholar 

  9. Lyons J, Li C, Ko F (2004) Melt-electrospinning part I: processing parameters and geometric properties. Polymer 45(22):7597–7603

    Article  Google Scholar 

  10. Detta N, Brown TD, Edin FK, Albrecht K, Chiellini F, Chiellini E, Dalton PD, Hutmacher DW (2010) Melt electrospinning of polycaprolactone and its blends with poly (ethylene glycol). Polym Int 59(11):1558–1562

    Article  Google Scholar 

  11. Zhmayev E, Cho D, Joo Y (2010) Modeling of melt electrospinning for semi-crystalline polymers. Polymer 51(1):274–290

    Article  Google Scholar 

  12. Hunley MT, Long TE (2008) Electrospinning functional nanoscale fibers: a perspective for the future. Polym Int 57(3):385–389

    Article  Google Scholar 

  13. Shimada N, Tsutsumi H, Nakane K, Ogihara T, Ogata N (2010) Poly (ethylene co vinyl alcohol) and Nylon 6/12 nanofibers produced by melt electrospinning system equipped with a line like laser beam melting device. J Appl Polym Sci 116(5):2998–3004

    Google Scholar 

  14. Hutmacher DW, Dalton PD (2011) Melt eectrospinning. Chem Asian J 6(1):44–56

    Google Scholar 

  15. Kong C, Jo K, Jo N, Kim H (2009) Effects of the spin line temperature profile and melt index of poly(propylene) on melt-electrospinning. Polym Eng Sci 49(2):391–396. doi:10.1002/pen.21303

    Article  Google Scholar 

  16. Nayak R, Padhye R, Kyratzis IL, Truong YB, Arnold L (2013) Effect of viscosity and electrical conductivity on the morphology and fibre diameter in melt electrospinning of polypropylene. Text Res J 83(6):606–617

    Article  Google Scholar 

  17. Nayak R, Kyratzis IL, Truong YB, Padhye R, Arnold L (2012) Melt-electrospinning of polypropylene with conductive additives. J Mater Sci 47(17):6387–6396. doi:10.1007/s10853-012-6563-3

    Article  Google Scholar 

  18. Deng R, Liu Y, Ding Y, Xie P, Luo L, Yang W (2009) Melt electrospinning of low-density polyethylene having a low-melt flow index. J Appl Polym Sci 114(1):166–175. doi:10.1002/app.29864

    Article  Google Scholar 

  19. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170

    Article  Google Scholar 

  20. Liang S, Hu D, Zhu C, Yu A (2002) Production of fine polymer powder under cryogenic conditions. Chem Eng Technol 25(4):401–405

    Article  Google Scholar 

  21. Larrondo L, St John Manley R (1981) Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci Polym Phys Ed 19(6):909–920

    Google Scholar 

  22. Góra A, Sahay R, Thavasi V, Ramakrishna S (2011) Melt-electrospun fibers for advances in biomedical engineering, clean energy, filtration, and separation. Polym Rev 51(3):265–287

    Article  Google Scholar 

  23. Lin T, Wang H, Wang X (2004) The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 15:1375

    Article  Google Scholar 

  24. Farrow G, Preston D (1960) Measurement of crystallinity in drawn polyethylene terephthalate fibres by X-ray diffraction. Br J Appl Phys 11:353

    Article  Google Scholar 

  25. Frost K, Kaminski D, Kirwan G, Lascaris E, Shanks R (2009) Crystallinity and structure of starch using wide angle X-ray scattering. Carbohyd Polym 78(3):543–548

    Article  Google Scholar 

  26. Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35(2–3):151–160

    Article  Google Scholar 

  27. Gugumus F (2002) Re-examination of the thermal oxidation reactions of polymers3. Various reactions in polyethylene and polypropylene. Polym Degrad Stab 77(1):147–155

    Article  Google Scholar 

  28. Adams J (1970) Analysis of nonvolatile oxidation products of polypropylene. III. Photodegradation. J Polym Sci Part A-1 Polym Chem 8(5):1279–1288

    Article  Google Scholar 

  29. Billingham N, Calvert P, Okopi I, Uzuner A (1991) The solubility of stabilizing additives in polypropylene. Polym Degrad Stab 31(1):23–36

    Article  Google Scholar 

  30. Tandon P, Neubert R, Wartewig S (2000) Thermotropic phase behaviour of sodium oleate as studied by FT-Raman spectroscopy and X-ray diffraction. J Mol Struct 526(1):49–57

    Article  Google Scholar 

  31. Broda J, Wochowicz A (2000) Influence of pigments on supermolecular structure of polypropylene fibres. Eur Polym J 36(6):1283–1297

    Article  Google Scholar 

  32. Machado G, Denardin E, Kinast E, Gonçalves M, De Luca M, Teixeira S, Samios D (2005) Crystalline properties and morphological changes in plastically deformed isotatic polypropylene evaluated by X-ray diffraction and transmission electron microscopy. Eur Polym J 41(1):129–138

    Article  Google Scholar 

  33. Racu C (2001) Influence of physical and mechanical characteristics of polypropylene fibres used for bending with hemp upon the yarn characteristics. Technical University Iasi Romania, Textile Engineering Department

    Google Scholar 

  34. Chung T, Lee S (1997) New hydrophilic polypropylene membranes; fabrication and evaluation. J Appl Polym Sci 64(3):567–575

    Article  Google Scholar 

  35. Jin M, Feng X, Xi J, Zhai J, Cho K, Feng L, Jiang L (2005) Superhydrophobic PDMS surface with ultralow adhesive force. Macromol Rapid Commun 26(22):1805–1809

    Article  Google Scholar 

  36. Cho D, Zhou H, Cho Y, Audus D, Joo YL (2010) Structural properties and superhydrophobicity of electrospun polypropylene fibers from solution and melt. Polymer 51:6005–6012

    Google Scholar 

  37. Nayak R, Kyratzis IL, Truong YB, Padhye R, Arnold L, Peeters G, Nichols L, O’Shea M (2012) Fabrication and characterisation of nanofibres by meltblowing and melt electrospinning. Adv Mater Res, pp 1294–1299

    Google Scholar 

  38. Nayak R (2012) Fabrication and characterisation of polypropylene nanofibres by melt electrospinning and meltblowing. PhD Thesis, RMIT University, Melbourne

    Google Scholar 

  39. Nayak R, Kyratzis L, Truong Y, Padhye R, Arnold L, Peeters G, O’Shea M (2011) Fabrication of submicron fibres by meltblowing and melt electrospinning. In: ICNFA 2011: 2nd International Conference on Nanotechnology: Fundamentals and Applications, ASET Inc, pp 331–338

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajkishore Nayak .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nayak, R. (2017). Results and Discussion: Melt Electrospinning. In: Polypropylene Nanofibers. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-61458-8_4

Download citation

Publish with us

Policies and ethics