Skip to main content

Review of Literature: Melt Electrospinning

  • Chapter
  • First Online:
Polypropylene Nanofibers

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Recently, nanotechnology has been booming in many important areas such as medicine, engineering, electronics and textiles. In fibrous materials it has predominantly come up in the form of electrospun nanofibres. This chapters deals with the process widely used for the fabrication of nanofibres, which is electrospinning due to its simplicity and suitability for a variety of polymers. Different types of electrospinning such as solution and melt electrospinning have been discussed. As this study is based on melt electrospinning, the research works related to the factors influencing the fibre properties such as applied voltage, collector distance, polymer viscosity and conductivity have been discussed. Furthermore, the characterisation of nanofibres using various technologies has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou F, Gong R (2008) Manufacturing technologies of polymeric nanofibres and nanofibre yarns. Polym Int 57(6):837–845

    Article  Google Scholar 

  2. Patanaik A, Anandjiwala R, Rengasamy R, Ghosh A, Pal H (2007) Nanotechnology in fibrous materials–a new perspective. Text Prog 39(2):67–120

    Article  Google Scholar 

  3. Rayleigh L (1882) On an instrument capable of measuring the intensity of aerial vibrations. Phil Mag 14:186–187

    Article  Google Scholar 

  4. Zeleny J (1917) Instability of electrified liquid surfaces. Phys Rev 10(1):1

    Article  Google Scholar 

  5. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chem Int Ed 46(30):5670–5703

    Article  Google Scholar 

  6. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211

    Article  Google Scholar 

  7. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170

    Article  Google Scholar 

  8. Teo W, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89

    Article  Google Scholar 

  9. Huang Z, Zhang Y, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  Google Scholar 

  10. Qizheng C, Xiangting D, Weili Y, Jinxian W, Huiru W, Xiaofeng Y, Xiaohui Y (2006) New developments of inorganic nanofibers fabricated by electrospinning. Rare Met Mater Eng 35(7):1167

    Google Scholar 

  11. Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8(1):64–75

    Article  Google Scholar 

  12. Pantano C, Gañán-Calvo A, Barrero A (1994) Zeroth-order, electrohydrostatic solution for electrospraying in cone-jet mode. J Aerosol Sci 25(6):1065–1077

    Article  Google Scholar 

  13. Taylor G (1969) Electrically driven jets. Proceed Royal Soc London A Math Phys Sci 313(1515):453–475

    Article  Google Scholar 

  14. Liu Y, Deng R, Hao M, Yan H, Yang W (2010) Orthogonal design study on factors effecting on fibers diameter of melt electrospinning. Polym Eng Sci 50(10):2074–2078. doi:10.1002/pen.21753

    Article  Google Scholar 

  15. Nayak R, Padhye R, Lyndon A (2010) Recent advancements in electrospinning process. Melliand Int 9(3):17–18

    Google Scholar 

  16. Watanabe K, Kim BS, Kim IS (2011) Development of Polypropylene Nanofiber Production System. Polym Rev 51(3):288–308

    Article  Google Scholar 

  17. Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26(31):6176–6184

    Article  Google Scholar 

  18. Choi JS, Lee SW, Jeong L, Bae S-H, Min BC, Youk JH, Park WH (2004) Effect of organosoluble salts on the nanofibrous structure of electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Int J Biol Macromol 34:249–256

    Article  Google Scholar 

  19. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25(7–8):1289–1297

    Article  Google Scholar 

  20. Dalton P, Joergensen N, Groll J, Moeller M (2008) Patterned melt electrospun substrates for tissue engineering. Biomed Mater 3:034109

    Article  Google Scholar 

  21. Chen C, Wang L, Huang Y (2007) Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite. Polymer 48(18):5202–5207

    Article  Google Scholar 

  22. Dalton P, Grafahrend D, Klinkhammer K, Klee D, Möller M (2007) Electrospinning of polymer melts: phenomenological observations. Polymer 48(23):6823–6833

    Article  Google Scholar 

  23. Dalton P, Klinkhammer K, Salber J, Klee D, Möller M (2006) Direct in vitro electrospinning with polymer melts. Biomacromolecules 7(3):686–690

    Article  Google Scholar 

  24. Zhou H, Green T, Joo Y (2006) The thermal effects on electrospinning of polylactic acid melts. Polymer 47(21):7497–7505

    Article  Google Scholar 

  25. Ogata N, Lu G, Iwata T, Yamaguchi S, Nakane K, Ogihara T (2007) Effects of ethylene content of poly(ethylene-co-vinyl alcohol) on diameter of fibers produced by melt-electrospinning. J Appl Polym Sci 104:1368–1375

    Article  Google Scholar 

  26. Ogata N, Yamaguchi S, Shimada N, Lu G, Iwata T, Nakane K, Ogihara T (2007) Poly (lactide) nanofibers produced by a melt electrospinning system with a laser melting device. J Appl Polym Sci 104(3):1640–1645

    Article  Google Scholar 

  27. Lyons JM (2004) Melt-electrospinning of thermoplastic polymers: an experimental and theoretical analysis. Drexel University

    Google Scholar 

  28. Deng R, Liu Y, Ding Y, Xie P, Luo L, Yang W (2009) Melt electrospinning of low-density polyethylene having a low-melt flow index. J Appl Polym Sci 114(1):166–175. doi:10.1002/app.29864

    Article  Google Scholar 

  29. Lee S, Kay Obendorf S (2006) Developing protective textile materials as barriers to liquid penetration using melt electrospinning. J Appl Polym Sci 102(4):3430–3437

    Article  Google Scholar 

  30. Kong C, Jo K, Jo N, Kim H (2009) Effects of the spin line temperature profile and melt index of poly(propylene) on melt-electrospinning. Polym Eng Sci 49(2):391–396. doi:10.1002/pen.21303

    Article  Google Scholar 

  31. Lyons J, Li C, Ko F (2004) Melt-electrospinning part I: processing parameters and geometric properties. Polymer 45(22):7597–7603

    Article  Google Scholar 

  32. Larrondo L, St John Manley R (1981) Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci Polym Phys Ed 19(6):909–920

    Google Scholar 

  33. Ogata N, Shimada N, Yamaguchi S, Nakane K, Ogihara T (2007) Melt electrospinning of poly (ethylene terephthalate) and polyalirate. J Appl Polym Sci 105(3):1127–1132

    Article  Google Scholar 

  34. Shimada N, Tsutsumi H, Nakane K, Ogihara T, Ogata N (2010) Poly (ethylene co vinyl alcohol) and Nylon 6/12 nanofibers produced by melt electrospinning system equipped with a line like laser beam melting device. J Appl Polym Sci 116(5):2998–3004

    Google Scholar 

  35. Tian S, Ogata N, Shimada N, Nakane K, Ogihara T, Yu M (2009) Melt electrospinning from poly (L-lactide) rods coated with poly (ethylene-co-vinyl alcohol). J Appl Polym Sci 113(2):1282–1288

    Article  Google Scholar 

  36. Zhmayev E, Cho D, Joo Y (2010) Modeling of melt electrospinning for semi-crystalline polymers. Polymer 51(1):274–290

    Article  Google Scholar 

  37. Cho D, Zhmayev E, Joo YL (2011) Structural studies of electrospun nylon 6 fibers from solution and melt. Polymer

    Google Scholar 

  38. Zhmayev E, Zhou H, Joo YL (2008) Modeling of non-isothermal polymer jets in melt electrospinning. J Non-Newtonian Fluid Mech 153(2–3):95–108

    Article  Google Scholar 

  39. McCann J, Marquez M, Xia Y (2006) Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett 6(12):2868–2872

    Article  Google Scholar 

  40. Li F, Zhao Y, Wang S, Han D, Jiang L, Song Y (2009) Thermochromic core–shell nanofibers fabricated by melt coaxial electrospinning. J Appl Polym Sci 112(1):269–274

    Article  Google Scholar 

  41. Detta N, Brown TD, Edin FK, Albrecht K, Chiellini F, Chiellini E, Dalton PD, Hutmacher DW (2010) Melt electrospinning of polycaprolactone and its blends with poly (ethylene glycol). Polym Int 59(11):1558–1562

    Article  Google Scholar 

  42. Shin YM, Hohman MM, Brenner MP, Rutledge GC (2001) Electrospinning: A whipping fluid jet generates submicron polymer fibers. Appl phys lett 78(8):1149–1151

    Google Scholar 

  43. Karchin A, Simonovsky FI, Ratner BD, Sanders JE (2011) Melt electrospinning of biodegradable polyurethane scaffolds. Acta Biomaterialia

    Google Scholar 

  44. Norton CL (1936) Method of and Apparatus for Producing Firbous or Filamentary Material. US Patent 2048651

    Google Scholar 

  45. Larrondo L, St John Manley R (1981) Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt. J Polym Sci Polym Phys Ed 19(6):933–940

    Google Scholar 

  46. Larrondo L, St John Manley R (1981) Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet. J Polym Sci Polym Phys Ed 19(6):921–932

    Google Scholar 

  47. Nayak R, Padhye R, Kyratzis IL, Truong YB, Arnold L (2012) Recent advances in nanofibre fabrication techniques. Text Res J 82(2):129–147

    Article  Google Scholar 

  48. Khurana H, Patra P, Warner S (2003) Nanofibers from melt electrospinning. Polym Prepr 44(2):67

    Google Scholar 

  49. Hutmacher DW, Dalton PD (2011) Melt electrospinning. Chem Asian J 6(1):44–56

    Google Scholar 

  50. Joo Y, Zhou H (2008) Apparatus and method for elevated temperature electrospinning. US Patent 7326043

    Google Scholar 

  51. Dalton PD, Grafahrend D, Klinkhammer K, Klee D, Möller M (2007) Electrospinning of polymer melts: phenomenological observations. Polymer 48(23):6823–6833

    Article  Google Scholar 

  52. Nayak R, Padhye R, Arnold L, Islam S (2011) Production of novel surfaces by electrospinning. Acta Univ Cibiniensis 58:128–138

    Google Scholar 

  53. Nayak R, Kyratzis IL, Truong YB, Padhye R, Arnold L, Peeters G, Nichols L, O’Shea M (2012) Fabrication and characterisation of nanofibres by meltblowing and melt electrospinning. In: Advanced Materials Research. Trans Tech Publications, pp 1294–1299

    Google Scholar 

  54. Yao L, Haas T, Guiseppi-Elie A, Bowlin G, Simpson D, Wnek G (2003) Electrospinning and stabilization of fully hydrolyzed poly (vinyl alcohol) fibers. Chem Mater 15(9):1860–1864

    Article  Google Scholar 

  55. Lin T, Wang H, Wang X (2004) The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 15:1375

    Article  Google Scholar 

  56. Hao MF, Liu Y, He XT, Ding YM, Yang WM (2011) Factors influencing diameter of polypropylene fiber in melt electrospinning. Adv Mater Res 221:129–134

    Article  Google Scholar 

  57. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216

    Article  Google Scholar 

  58. Deitzel JM (1999) Generation of polymer nanofibers through electrospinning. DTIC Document

    Google Scholar 

  59. Takasaki M, Fu H, Nakata K, Ohkoshi Y, Hirai T (2008) Ultra-fine fibers produced by laser-electrospinning. Sen’i Gakkaishi 64(1):29–31

    Google Scholar 

  60. Ogata N, Lu G, Iwata T, Yamaguchi S, Nakane K, Ogihara T (2007) Effects of ethylene content of poly (ethylene co vinyl alcohol) on diameter of fibers produced by melt electrospinning. J Appl Polym Sci 104(2):1368–1375

    Article  Google Scholar 

  61. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3(2):232–238

    Article  Google Scholar 

  62. Cho D, Zhou H, Cho Y, Audus D, Joo YL (2010) Structural properties and superhydrophobicity of electrospun polypropylene fibers from solution and melt. Polymer

    Google Scholar 

  63. Kilic A, Oruc F, Demir A (2008) Effects of polarity on electrospinning process. Text Res J 78(6):532

    Article  Google Scholar 

  64. Kessick R, Fenn J, Tepper G (2004) The use of AC potentials in electrospraying and electrospinning processes. Polymer 45(9):2981–2984

    Article  Google Scholar 

  65. Nayak R, Padhye R, Arnold L, Behera B (2010) The promising future of polymer nanocomposites. Textile Asia 41:25–29

    Google Scholar 

  66. Nayak R, Kyratzis L, Truong Y, Padhye R, Arnold L, Peeters G, O’Shea M (2011) Fabrication of submicron fibres by meltblowing and melt electrospinning. In: ICNFA 2011: 2nd International Conference on Nanotechnology: Fundamentals and Applications, ASET Inc, pp 338-331–338-337

    Google Scholar 

  67. Nicholson E, Baker T, Redman S, Kalaugher E, Rosser K, Everitt N, Ashfold M, Partridge P (1996) Young’s modulus of diamond-coated fibres and wires. Diam Relat Mater 5(6–8):658–663

    Article  Google Scholar 

  68. Bellan LM, Kameoka J, Craighead HG (2005) Measurement of the Young’s moduli of individual polyethylene oxide and glass nanofibres. Nanotechnology 16:1095

    Article  Google Scholar 

  69. Lee S, Kim B, Lee D, Lee H, Park J, Ahn S, Campbell E, Park Y (2006) Fabrication and mechanical properties of suspended one-dimensional polymer nanostructures: polypyrrole nanotube and helical polyacetylene nanofibre. Nanotechnology 17:992

    Article  Google Scholar 

  70. Tan E, Lim C (2006) Mechanical characterization of nanofibers-a review. Compos Sci Technol 66(9):1102–1111

    Article  Google Scholar 

  71. Naraghi M, Chasiotis I, Kahn H, Wen Y, Dzenis Y (2007) Novel method for mechanical characterization of polymeric nanofibers. Rev Sci Instrum 78:085108

    Article  Google Scholar 

  72. Haque M, Saif MTA (2003) A review of MEMS-based microscale and nanoscale tensile and bending testing. Exp Mech 43(3):248–255

    Article  Google Scholar 

  73. Tan E, Lim C (2004) Novel approach to tensile testing of micro-and nanoscale fibers. Rev Sci Instrum 75:2581

    Article  Google Scholar 

  74. Inai R, Kotaki M, Ramakrishna S (2005) Structure and properties of electrospun PLLA single nanofibres. Nanotechnology 16:208

    Article  Google Scholar 

  75. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425

    Article  Google Scholar 

  76. Subbiah T, Bhat G, Tock R, Parameswaran S, Ramkumar S (2005) Electrospinning of nanofibers. J Appl Polym Sci 96(2):557–569

    Article  Google Scholar 

  77. Lim C, Tan E, Ng S (2008) Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers. Appl Phys Lett 92(14):141908. doi:http://dx.doi.org/10.1063/1.2857478

    Article  Google Scholar 

  78. Murphy J (2001) Additives for plastics handbook. Elsevier, Amsterdam

    Google Scholar 

  79. Mascia L (1974) The role of additives in plastics. Edward Arnold London

    Google Scholar 

  80. Tsebrenko M, Rezanova N, Nikolaeva A, Tsebrenko I, Lazar I (1999) Effect of sodium oleate addition on the morphology of polypropylene co polyamide blends. Polym Eng Sci 39(6):1014–1021

    Article  Google Scholar 

  81. Nayak R (2012) Fabrication and characterisation of polypropylene nanofibres by melt electrospinning and meltblowing. PhD Thesis, RMIT University, Melbourne

    Google Scholar 

  82. Xie M, Liu X, Li H (2006) Influence of poly (ethylene glycol) containing additives on extrusion of ultrahigh molecular weight polyethylene/polypropylene blend. J Appl Polym Sci 100(2):1282–1288

    Article  Google Scholar 

  83. Nayak R, Padhye R, Kyratzis IL, Truong YB, Arnold L (2013) Effect of viscosity and electrical conductivity on the morphology and fibre diameter in melt electrospinning of polypropylene. Text Res J 83(6):606–617

    Google Scholar 

  84. Ryan K, Lupton K, Pape P, John V (2000) Ultra high molecular weight functional siloxane additives in polymers. Effects on processing and properties. J Vinyl Addit Technol 6(1):7–19

    Google Scholar 

  85. Nayak R, Kyratzis IL, Truong YB, Padhye R, Arnold L (2012) Melt-electrospinning of polypropylene with conductive additives. J Mater Sci 47(17):6387–6396

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajkishore Nayak .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nayak, R. (2017). Review of Literature: Melt Electrospinning. In: Polypropylene Nanofibers. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-61458-8_2

Download citation

Publish with us

Policies and ethics