Skip to main content

Introduction

  • Chapter
  • First Online:
Polypropylene Nanofibers

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 583 Accesses

Abstract

This chapter discusses the scope of the study; research concepts and hypotheses; aims and objectives; and contribution of the research. In this study, nanofibres were fabricated by two melt processes: melt electrospinning and meltblowing. The nanofibres fabricated by these processes were characterised by various techniques to understand the fibre morphology, thermal, crystalline and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Radwan R (2007) Electron induced modifications in the optical properties of polypropylene. J Phys D Appl Phys 40:374

    Article  Google Scholar 

  2. Ziabicki A (1976) Fundamentals of fibre formation: the science of fibre spinning and drawing. Wiley, New York

    Google Scholar 

  3. Deitzel J, Kleinmeyer J, Harris D, Tan NB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272

    Article  Google Scholar 

  4. Ziabicki A (1976) Fundamentals of fiber formation: the science of fiber spinning and drawing. Wiley, New York

    Google Scholar 

  5. Dutton KC (2008) Overview and analysis of the meltblown process and parameters. J Text Appar Technol Manag 6(1):1–24

    Google Scholar 

  6. Ramakrishna S (2005) An introduction to electrospinning and nanofibers. World Scientific Pub Co Inc, Singapore

    Google Scholar 

  7. Huang Z, Zhang Y, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  Google Scholar 

  8. Bhattarai S, Bhattarai N, Yi H, Hwang P, Cha D, Kim H (2004) Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials 25(13):2595–2602

    Article  Google Scholar 

  9. Xu C, Inai R, Kotaki M, Ramakrishna S (2004) Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25(5):877–886

    Article  Google Scholar 

  10. Bergshoef M, Vancso G (1999) Transparent nanocomposites with ultrathin, electrospun nylon-4, 6 fiber reinforcement. Adv mater 11(16):1362–1365

    Article  Google Scholar 

  11. Zhou F, Gong R (2008) Manufacturing technologies of polymeric nanofibres and nanofibre yarns. Polym Int 57(6):837–845

    Article  Google Scholar 

  12. Patanaik A, Anandjiwala R, Rengasamy R, Ghosh A, Pal H (2007) Nanotechnology in fibrous materials–a new perspective. Text Prog 39(2):67–120

    Article  Google Scholar 

  13. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170

    Article  Google Scholar 

  14. Nayak R, Padhye R, Kyratzis IL, Truong YB, Arnold L (2012) Recent advances in nanofibre fabrication techniques. Text Res J 82(2):129–147

    Google Scholar 

  15. Nayak R, Padhye R, Arnold L, Islam S (2011) Production of novel surfaces by electrospinning. Acta Univ Cibiniensis 58:128–138

    Google Scholar 

  16. Nayak R, Kyratzis IL, Truong YB, Padhye R, Arnold L, Peeters G, Nichols L, O’Shea M (2012) Fabrication and characterisation of nanofibres by meltblowing and melt electrospinning. Adv Mater Res 472:1294–1299

    Google Scholar 

  17. Cho D, Zhmayev E, Joo YL (2011) Structural studies of electrospun nylon 6 fibers from solution and melt. Polymer

    Google Scholar 

  18. Ogata N, Shimada N, Yamaguchi S, Nakane K, Ogihara T (2007) Melt electrospinning of poly (ethylene terephthalate) and polyalirate. J Appl Polym Sci 105(3):1127–1132

    Article  Google Scholar 

  19. Hutmacher DW, Dalton PD (2011) Melt electrospinning. Chem Asian J 6(1):44–56

    Google Scholar 

  20. Dalton P, Klinkhammer K, Salber J, Klee D, Möller M (2006) Direct in vitro electrospinning with polymer melts. Biomacromolecules 7(3):686–690

    Article  Google Scholar 

  21. Ogata N, Yamaguchi S, Shimada N, Lu G, Iwata T, Nakane K, Ogihara T (2007) Poly (lactide) nanofibers produced by a melt electrospinning system with a laser melting device. J Appl Polym Sci 104(3):1640–1645

    Article  Google Scholar 

  22. Li F, Zhao Y, Wang S, Han D, Jiang L, Song Y (2009) Thermochromic core–shell nanofibers fabricated by melt coaxial electrospinning. J Appl Polym Sci 112(1):269–274

    Article  Google Scholar 

  23. Zhmayev E, Zhou H, Joo YL (2008) Modeling of non-isothermal polymer jets in melt electrospinning. J Non-Newton Fluid Mech 153(2–3):95–108

    Article  Google Scholar 

  24. Góra A, Sahay R, Thavasi V, Ramakrishna S (2011) Melt-electrospun fibers for advances in biomedical engineering, clean energy, filtration, and separation. Polym Rev 51(3):265–287

    Article  Google Scholar 

  25. Zhou H, Green T, Joo Y (2006) The thermal effects on electrospinning of polylactic acid melts. Polymer 47(21):7497–7505

    Article  Google Scholar 

  26. Ellison C, Phatak A, Giles D, Macosko C, Bates F (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48(11):3306–3316

    Article  Google Scholar 

  27. Pinchuk LS (2002) Melt blowing: equipment, technology, and polymer fibrous materials. Verlag, Berlin

    Google Scholar 

  28. Wang X, Ke Q (2006) Experimental investigation of adhesive meltblown web production using accessory air. Polym Eng Sci 46(1):1–7

    Article  Google Scholar 

  29. Yu J, Fridrikh S, Rutledge G (2006) The role of elasticity in the formation of electrospun fibers. Polymer 47(13):4789–4797

    Article  Google Scholar 

  30. Funada T, Joseph D (2003) Viscoelastic potential flow analysis of capillary instability. J Non-Newton Fluid Mech 111(2–3):87–105

    Article  Google Scholar 

  31. McKee M, Park T, Unal S, Yilgor I, Long T (2005) Electrospinning of linear and highly branched segmented poly (urethane urea) s. Polymer 46(7):2011–2015

    Article  Google Scholar 

  32. Marla V, Shambaugh R (2004) Ind Eng Chem Res 43:2793

    Article  Google Scholar 

  33. Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48(11):3306–3316

    Article  Google Scholar 

  34. Ellison CJ, Phatak A, Macosko CW, Bates FS (2007) Nanofiber production via melt blowing. Proceedings of 2007 AIChE Annual Meeting. Nov 7, 2007. Germany. Salt lake city, Utah

    Google Scholar 

  35. Nayak R, Kyratzis IL, Truong YB, Padhye R, Arnold L, Peeters G, O’Shea M, Nichols L (2013) Fabrication and characterisation of polypropylene nanofibres by meltblowing process using different fluids. J Mater Sci 48(1):273–281

    Google Scholar 

  36. Aymes-Chodur C, Betz N, Lengendre B, Yagoubi Y (2006) Polym degrad stab 91:649

    Article  Google Scholar 

  37. Abdel-Hamid H (2005) Effect of electron beam irradiation on polypropylene films–dielectric and FT-IR studies. Solid-state Electron 49(7):1163–1167

    Article  Google Scholar 

  38. Mishra R, Tripathy S, Sinha D, Dwivedi K, Ghosh S, Khathing D, Müller M, Fink D, Chung W (2000) Optical and electrical properties of some electron and proton irradiated polymers. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 168(1):59–64

    Article  Google Scholar 

  39. Lee S, Kay Obendorf S (2006) Developing protective textile materials as barriers to liquid penetration using melt electrospinning. J Appl Polym Sci 102(4):3430–3437

    Article  Google Scholar 

  40. Wang W, Tang L, Qu B (2003) Mechanical properties and morphological structures of short glass fiber reinforced PP/EPDM composite. Eur Polym J 39(11):2129–2134

    Article  Google Scholar 

  41. Gahan R, Zguris GC (2000) A review of the melt blown process. IEEE 145–149

    Google Scholar 

  42. McCulloch JG (1999) The history of the development of meltblowing technology. Int Nonwovens J 8:139–149

    Google Scholar 

  43. Nayak R (2012) Fabrication and characterisation of polypropylene nanofibres by melt electrospinning and meltblowing. PhD Thesis, RMIT University, Melbourne

    Google Scholar 

  44. Mascia L, Xanthos M (1992) An overview of additives and modifiers for polymer blends: Facts, deductions, and uncertainties. Adv Polym Technol 11(4):237–248

    Article  Google Scholar 

  45. Yao L, Haas T, Guiseppi-Elie A, Bowlin G, Simpson D, Wnek G (2003) Electrospinning and stabilization of fully hydrolyzed poly (vinyl alcohol) fibers. Chem Mater 15(9):1860–1864

    Article  Google Scholar 

  46. Lin T, Wang H, Wang X (2004) The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 15:1375

    Article  Google Scholar 

  47. Taipalus R, Harmia T, Zhang M, Friedrich K (2001) The electrical conductivity of carbon-fibre-reinforced polypropylene/polyaniline complex-blends: experimental characterisation and modelling. Compos Sci Technol 61(6):801–814

    Article  Google Scholar 

  48. Watanabe K, Kim BS, Kim IS (2011) Development of Polypropylene Nanofiber Production System. Polym Rev 51(3):288–308

    Article  Google Scholar 

  49. Nayak R, Padhye R, Kyratzis IL, Truong YB, Arnold L (2013) Effect of viscosity and electrical conductivity on the morphology and fibre diameter in melt electrospinning of polypropylene. Text Res J 83(6):606–617

    Google Scholar 

  50. Kim B, Koncar V, Devaux E, Dufour C, Viallier P (2004) Electrical and morphological properties of PP and PET conductive polymer fibers. Synth Met 146(2):167–174

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajkishore Nayak .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nayak, R. (2017). Introduction. In: Polypropylene Nanofibers. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-61458-8_1

Download citation

Publish with us

Policies and ethics