Skip to main content

The Mean Drift: Tailoring the Mean Field Theory of Markov Processes for Real-World Applications

  • Conference paper
  • First Online:
Analytical and Stochastic Modelling Techniques and Applications (ASMTA 2017)

Abstract

The statement of the mean field approximation theorem in the mean field theory of Markov processes particularly targets the behaviour of population processes with an unbounded number of agents. However, in most real-world engineering applications one faces the problem of analysing middle-sized systems in which the number of agents is bounded. In this paper we build on previous work in this area and introduce the mean drift. We present the concept of population processes and the conditions under which the approximation theorems apply, and then show how the mean drift can be linked to observations which follow from the propagation of chaos. We then use the mean drift to construct a new set of ordinary differential equations which address the analysis of population processes with an arbitrary size.

The authors would like to thank Erik de Vink, Mieke Massink, Tjalling Tjalkens and Ulyana Tikhonova for their constructive comments and helpful remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kurtz, T.G.: Approximation of Population Processes. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 36. SIAM, Philadelphia (1981)

    Book  Google Scholar 

  2. Benaim, M., Le Boudec, J.-Y.: A class of mean field interaction models for computer and communication systems. Perform. Eval. 65(11), 823–838 (2008)

    Article  Google Scholar 

  3. Dietz, K., Heesterbeek, J.A.P.: Daniel Bernoulli’s epidemiological model revisited. Math. Biosci. 180(1), 1–21 (2002)

    Article  MathSciNet  Google Scholar 

  4. Darling, R.W.R., Norris, J.R.: Differential equation approximations for Markov chains. Probab. Surv. 5, 37–79 (2008)

    Article  MathSciNet  Google Scholar 

  5. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Probab. 7(1), 49–58 (1970)

    Article  MathSciNet  Google Scholar 

  6. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  7. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Commun. 18(3), 535–547 (2000)

    Article  Google Scholar 

  8. Le Boudec, J.-Y., McDonald, D., Mundinger, J.: A generic mean field convergence result for systems of interacting objects. In: Fourth International Conference on the Quantitative Evaluation of Systems, QEST 2007, pp. 3–18. IEEE (2007)

    Google Scholar 

  9. Hillston, J.: Fluid flow approximation of PEPA models. In: QEST 2005, pp. 33–42. IEEE (2005)

    Google Scholar 

  10. Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a Markovian process algebra. Theoret. Comput. Sci. 411(22), 2260–2297 (2010)

    Article  MathSciNet  Google Scholar 

  11. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013)

    Article  Google Scholar 

  12. Pourranjbar, A., Hillston, J., Bortolussi, L.: Don’t just go with the flow: cautionary tales of fluid flow approximation. In: Tribastone, M., Gilmore, S. (eds.) EPEW 2012. LNCS, vol. 7587, pp. 156–171. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36781-6_11

    Chapter  Google Scholar 

  13. Beccuti, M., Bibbona, E., Horvath, A., Sirovich, R., Angius, A., Balbo, G.: Analysis of Petri net models through Stochastic Differential Equations. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 273–293. Springer, Cham (2014). doi:10.1007/978-3-319-07734-5_15

    Chapter  MATH  Google Scholar 

  14. Bobbio, A., Gribaudo, M., Telek, M.: Analysis of large scale interacting systems by mean field method. In: Fifth International Conference on Quantitative Evaluation of Systems. QEST 2008, pp. 215–224. IEEE (2008)

    Google Scholar 

  15. Kurtz, T.G.: Strong approximation theorems for density dependent Markov chains. Stoch. Process. Their Appl. 6(3), 223–240 (1978)

    Article  MathSciNet  Google Scholar 

  16. Talebi, M., Groote, J.F., Linnartz, J.-P.M.G.: The mean drift: tailoring the mean-field theory of Markov processes for real-world applications. arXiv preprint math/1703.04327 (2017)

    Chapter  Google Scholar 

  17. Sznitman, A.-S.: Topics in propagation of chaos. In: Hennequin, P.-L. (ed.) Ecole d’Eté de Probabilités de Saint-Flour XIX — 1989. LNM, vol. 1464, pp. 165–251. Springer, Heidelberg (1991). doi:10.1007/BFb0085169

    Chapter  Google Scholar 

  18. Vvedenskaya, N.D., Sukhov, Y.M.: Multiuser multiple-access system: stability and metastability. Problemy Peredachi Informatsii 43(3), 105–111 (2007)

    MathSciNet  Google Scholar 

  19. Talebi, M., Groote, J.F., Linnartz, J.-P.M.G.: Continuous approximation of stochastic models for wireless sensor networks. In: 2015 IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT), pp. 1–6. IEEE (2015)

    Google Scholar 

Download references

Acknowledgments

The research from DEWI project (www.dewi-project.eu) leading to these results has received funding from the ARTEMIS Joint Undertaking under grant agreement No. 621353.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Talebi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Talebi, M., Groote, J.F., Linnartz, JP.M.G. (2017). The Mean Drift: Tailoring the Mean Field Theory of Markov Processes for Real-World Applications. In: Thomas, N., Forshaw, M. (eds) Analytical and Stochastic Modelling Techniques and Applications. ASMTA 2017. Lecture Notes in Computer Science(), vol 10378. Springer, Cham. https://doi.org/10.1007/978-3-319-61428-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61428-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61427-4

  • Online ISBN: 978-3-319-61428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics