Skip to main content

Genomic Applications for Pediatric Orbital Tumours

  • Chapter
  • First Online:
Pediatric Oculoplastic Surgery
  • 1581 Accesses

Abstract

This chapter will highlight the genomic and epigenetic basis of paediatric orbital tumours, focusing on some of the more common lesions. It will attempt to illustrate the potential for targeted and individualized therapies which are now beginning to accompany the rapid advances in laboratory research. It is now apparent that as a more complete understanding of the genetic and epigenetic aberrations, cancer pathways and proteomics develops, a parallel improvement in available targeted therapies will become a practical reality in the management of these orbital cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ERK:

Extracellular signal-regulated protein kinase

mTOR:

Mammalian target of rapamycin

MAPK:

Mitogen-activated protein kinase

PTEN:

Phosphatase and tensin homolog

PI3K:

Phosphoinositide 3-kinase

PHTS:

PTEN hamartoma tumour syndrome

Rb:

Retinoblastoma

MEK:

RAS-RAF-mitogen-activated protein kinase kinase

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  2. Visvader JE. Cells of origin in cancer. Nature. 2011;469:314–21.

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  4. Hahn WC, Weinberg RA. A subway map of cancer pathways. Nat Rev Cancer. [online]. http://www.nature.com/nrc/poster/subpathways/index.html

  5. Neuzillet C, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S, Raymond E. MEK in cancer and cancer therapy. Pharmacol Ther. 2014;141:160–71.

    Article  CAS  PubMed  Google Scholar 

  6. Simoes AES, Rodrigues CMP, Borralho PM. The MEK5/ERK5 signalling pathway in cancer: a promising novel therapeutic target. Drug Discov Today. 2016;21:1654–63.

    Article  CAS  PubMed  Google Scholar 

  7. Asem MS, Buechler S, Burkhalter Wates R, Miller DL, Sharon Stack M. Wnt5a Signaling in Cancer. Cancers (Basel). 2016;8(9):79.

    Article  Google Scholar 

  8. Mayer IA, Artega CL. The PI3K/AKT pathway as a target for cancer treatmen.T. Annu Rev Med. 2016;67:11–28.

    Article  CAS  PubMed  Google Scholar 

  9. Xie Y, Naizabekov S, Chen Z, Tokay T. Power of PTEN/AKT: molecular switch between tumor suppressors and oncogenes. Oncol Lett. 2016;12:375–8.

    PubMed  PubMed Central  Google Scholar 

  10. Katoh M, Nakagama H. FGF receptors: cancer biology and therapeutics. Med Res Rev. 2014;34:280–300.

    Article  CAS  PubMed  Google Scholar 

  11. Choi JD, Lee J-S. Interplay between epigenetics and genetics in cancer. Genomics Inform. 2013;11:164–73.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell. 2013;153:38–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Araujo SJ. The hedgehog Signalling pathway in cell migration and guidance: what we have learned from Drosophila melanogaster. Cancers (Basel). 2015;7:2012–22.

    Article  Google Scholar 

  14. Liu M, Zhou MJ, Chen Z, Chen A. Understanding the epigenetic regulation of tumours and their microenvironments: opportunities and problems for epigenetic therapy. J Pathol. 2017;241:10–24.

    Article  PubMed  Google Scholar 

  15. Oliver GR, Hart SN, Klee EW. Bioinformatics for clinical next generation sequencing. Clin Chem. 2015;61:124–35.

    Article  CAS  PubMed  Google Scholar 

  16. Seki M, Nishimura R, Yoshida K, Shimamura T, Shiraishi Y, Sato Y. Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma. Nat Commun. 2015;6:7557.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu C, Li D, Jiang J, Hu J, Zhang W, Chen Y, Cui X, Qi Y, Zou H, Zhang W, Li F. Analysis of molecular cytogenetic alteration in rhabdomyosarcoma by array comparative genomic hybridization. PLoS One. 2014;9(4):e9492.

    Google Scholar 

  18. O’Sullivan M. Pediatric soft tissue tumor pathology: a happy morpho-molecular union. Semin Diagn Pathol. 2016;33:377–95.

    Article  PubMed  Google Scholar 

  19. Shern JF, Chen L, Chmielecki J, Wei JS, Patidar R, Rosenberg M, et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 2014;4:216–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abraham J, Nuñez-Álvarez Y, Hettmer S, Carrió E, Chen HI, Nishijo K, et al. Lineage of origin in rhabdomyosarcoma informs pharmacological response. Genes Dev. 2014;28:1578–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pishas KI, Lessnick SL. Recent advances in targeted therapy for Ewing sarcoma. F1000Research. 2016;5:2077.

    Article  Google Scholar 

  22. Sullivan TJ. Histiocytic, hematopoietic, and lymphoproliferative disorders. Ch 27 244–249. In: Lambert SR, Lyons CJ, editors. Pediatric ophthalmology and strabismus. 5th ed. Philadelphia: Elsevier; 2017.

    Google Scholar 

  23. Maccheron LJ, McNab AA, Elder J, Selva D, Martin FJ, Clement CI, Sainani A, Sullivan TJ. Ocular adnexal Langerhan’s cell histiocytosis: clinical features and management. Orbit. 2006;25:169–77.

    Article  PubMed  Google Scholar 

  24. Allen CE, Ladisch S, McClain KL. How I treat Langerhans cell Histiocytosis. Blood. 2015;126:26–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Durham BH, Diamond EL, Abdel-Wahab O. Histiocytic neoplasms in the era of personalized genomic medicine. Curr Opin Hematol. 2016;23:416–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schnur RE. Type 1 neurofibromatosis: a geno-ocluo-dermatologic update. Curr Opin Ophthalmol. 2012;23:364–72.

    Article  PubMed  Google Scholar 

  27. Karajannis MA, Ferner RE. Neurofibromatosis-related tumors: emerging biology and therapies. Curr Opin Pediatr. 2015;27:26–33.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rodriguez FJ, Raabe EH. mTOR: a new therapeutic target for pediatric low-grade glioma? CNS Oncol. 2014;3:89–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gutmann DH. Eliminating barriers to personalized medicine: learning from neurofibromatosis type 1. Neurology. 2014;83:463–71.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jessen WJ, Miller SJ, Jousma E, et al. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Invest. 2013;123:340–7.

    Article  CAS  PubMed  Google Scholar 

  31. Helfferich J, Nijmeijer R, Brouwer OF, et al. Neurofibromatosis type 1 associated giomas: a comparison with sporadic low grade gliomas. Crit Rev Oncol Hematol. 2016;104:30–41.

    Article  PubMed  Google Scholar 

  32. Kaul A, Toonen JA, Cimino P, et al. Akt- or MEK-mediated mTOR inhibition suppresses Nf1 optic glioma growth. Neuro-Oncology. 2015;17:843–53.

    Article  CAS  PubMed  Google Scholar 

  33. Tan WH. The spectrum of vascular anomalies in patients with PTEN mutations: implications for diagnosis and management. J Med Genet. 2007;44:594–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schmid GL, Kässner F, Uhlig HH. Sirolimus treatment of severe PTEN hamartoma tumor syndrome: case report and in vitro studies. Pediatr Res. 2014;75:527–34.

    Article  CAS  PubMed  Google Scholar 

  35. Owens C, Irwin M. Neuroblastoma: the impact of biology and cooperation leading to personalized treatments. Crit Rev Clin Lab Sci. 2012;49:85–115.

    Article  CAS  PubMed  Google Scholar 

  36. Ahuja N, Sharma AR, Baylin SB. Epigenetic therapeutics: a new weapon in the war against cancer. Annu Rev Med. 2016;67:73–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy John Sullivan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Sullivan, T.J. (2018). Genomic Applications for Pediatric Orbital Tumours. In: Katowitz, J., Katowitz, W. (eds) Pediatric Oculoplastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-60814-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60814-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60812-9

  • Online ISBN: 978-3-319-60814-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics