Skip to main content

Honey Bee Viruses—Pathogenesis, Mechanistic Insights, and Possible Management Projections

  • Chapter
  • First Online:
Beekeeping – From Science to Practice

Abstract

Honey bee viruses have gained substantial attention due to their involvement in the collapse of honey bee colonies. This chapter focuses on honey bee viruses linked to honey bee colony losses, specifically those that cause paralysis, those carried by Varroa mites, and those that cause deformed wings. Often virus infections in the colony are dormant and asymptomatic. Asymptomatic infections can convert to active (and visible) symptomatic infections when colonies are exposed to various stresses. These stresses include biological, such as Varroa destructor, mechanical, such as the utilization of bee colonies for pollination in net-covered crops, and chemical, such as the use of insecticides harmful to bees. These stresses enable viruses to overcome natural honey bee defenses, by facilitating viral access to the bee blood (hemolymph) and by weakening its immune system. Knowledge and understanding of the cause-and-effect interactions between viruses, stress factors, and honey bees will promote the use of antistress measures to help ameliorate collapse of honey bee colonies. This chapter is the result of intense collaboration between Y.S., instructor in beekeeping for the Extension Service of the Ministry of Agriculture and N.C., researcher of insect viruses and particularly honey bee viruses at ARO. The subjects presented below try to integrate the beekeeping and virus pathology perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amiri E, Meixner M, Buchler R, Kryger P (2014) Chronic bee paralysis virus in honeybee queens: evaluating susceptibility and infection routes. Viruses-Basel 6(3):1188–1201. doi:10.3390/v6031188

    Article  CAS  Google Scholar 

  • Bailey L, Woods RD, Gibbs AJ (1963) Two viruses from adult honey bees (Apis mellifera Linnaeus). Virology 21:390–395

    Article  CAS  PubMed  Google Scholar 

  • Bailey L, Ball BV, Perry JN (1981) The prevalence of honey bee viruses in Britain. Ann Appl Biol 97:109–118

    Article  Google Scholar 

  • Berthoud H, Imdorf A, Haueter M, Radloff S, Neumann P (2013) Virus infections and winter losses of honey bee colonies (Apis mellifera). J Apic Res 49:60–65

    Article  Google Scholar 

  • Blacquiere T, Smagghe G, van Gestel CAM, Mommaerts V (2012) Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicol 21:973–992

    Article  CAS  Google Scholar 

  • Blanchard P, Ribiere M, Celle O, Lallemand P, Schurr F, Olivier V, Iscache AL, Faucon JP (2007) Evaluation of a real-time two-step RT-PCR assay for quantitation of Chronic bee paralysis virus (CBPV) genome in experimentally-infected bee tissues and in life stages of a symptomatic colony. J Virol Methods 141:7–13

    Article  CAS  PubMed  Google Scholar 

  • Boecking O, Genersch E (2008) Varroosis—The ongoing crisis in bee keeping. J Verbraucherschutz und Lebensmittelsicherheit 3:221–228

    Article  Google Scholar 

  • Boncristiani HF, di Prisco G, Pettis JS, Hamilton M, Chen YP (2009) Molecular approaches to the analysis of deformed wing virus replication and pathogenesis in the honey bee, Apis mellifera. Virology J 6:221. doi:10.1186/1743-422X-6-221

    Article  CAS  Google Scholar 

  • Boncristiani H, Underwood R, Schwarz R, Evans JD, Pettis J, Vanengelsdorp D (2012) Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. J Insect Physiol 58:613–620

    Article  CAS  PubMed  Google Scholar 

  • Boncristiani HF, Evans JD, Chen Y et al (2013) In vitro infection of pupae with Israeli acute paralysis virus suggests disturbance of transcriptional homeostasis in honey bees (Apis mellifera). PLoS ONE 89:e73429. doi:10.1371

    Google Scholar 

  • Buchler R, Berg S, le Conte Y (2010) Breeding for resistance to Varroa destructor in Europe. Apidologie 41:393–408. doi:10.1051/apido/2010011

    Article  Google Scholar 

  • Chen YP, Siede R (2007) Honey bee viruses. Adv. Virus. Res. 70:33–80

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Pettis JS, Corona M, Chen WP, Li CJ, Spivak M, Visscher PK, Degrandi-Hoffman G, Boncristiani H, Zhao Y, Vanengelsdorp D, Delaplane K, Solter L, Drummond F, Kramer M, Lipkin WI, Palacios G, Hamilton MC, Smith B, Huang SK, Zheng HQ, Li JL, Zhang X, Zhou AF, Wu LY, Zhou JZ, Lee ML, Teixeira EW, Li ZG, Evans JD (2014) Israeli acute paralysis virus: epidemiology, pathogenesis and implications for honey bee health. PLoS Pathog 10(7):e1004261. doi:10.1371/journal.ppat.1004261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cornman RS, Tarpy DR, Chen Y, Jeffreys L, Lopez D, Pettis JS, van Engelsdorp D, Evans JD (2012) Pathogen webs in collapsing honey bee colonies. PLoS ONE 7(8):e43562. doi:10.1371/journal.pone.0043562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, Martinson V, Vanengelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287

    Article  CAS  PubMed  Google Scholar 

  • Dainat B, Evans JD, Chen YP, Gauthier L, Neumann P (2012a) dead or alive: deformed wing virus and Varroa destructor reduce the life span of winter honeybees. Appl Environ Microbiol 78(4):981–987. doi:10.1128/AEM.06537-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dainat B, Evans JD, Chen YP, Gauthier L, Neumann P (2012b) Predictive markers of honey bee colony collapse. PLoS ONE 7(2):e32151. doi:10.1371/journal.pone.0032151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Miranda JR, Genersch E (2010) Deformed wing virus. J Invertebr Pathol 103(Suppl. 1):S48–S61. doi:10.1016/j.jip.2009.06.012

    Article  PubMed  CAS  Google Scholar 

  • de Miranda JR, Cordoni G, Budge G (2010) The acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus complex. J Invertebr. Pathol 103(Suppl. 1):S30–S47. doi:10.1016/j.jip.2009.06.014

    Article  PubMed  CAS  Google Scholar 

  • de Miranda JR, Bailey L, Ball BV et al (2013) Standard methods for virus research in Apis mellifera. J Apic Res 52(4). doi:52.4.22

    Google Scholar 

  • Desai SD, Eu YJ, Whyard S, Currie RW (2012) Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion. Insect Mol Biol 21(4):446–455. doi:10.1111/j.1365-2583.2012.01150.x

    Article  CAS  PubMed  Google Scholar 

  • di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F, Gargiulo G, Pennacchio F (2013) Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc Natl Acad Sci USA 110(46):18466–18471. doi:10.1073/pnas.1314923110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fievet J, Tentcheva D, Gauthier L, de Miranda J, Cousserans F, Colin ME, Bergoin M (2006) Localization of deformed wing virus infection in queen and drone Apis mellifera L. Virology J 3:16. doi:10.1186/1743-422X-3-16

    Article  CAS  Google Scholar 

  • Fujiyuki T, Takeuchi H, Ono M et al (2005) Kakugo virus from brains of aggressive worker honeybees. In: Maramorosch K, Shatkin AJ (eds) Adv Virus Res Vol 65

    Google Scholar 

  • Galbraith DA, Yang X, Nino EL, Yi S, Grozinger C (2015) Parallel epigenomic and transcriptomic responses to viral infection in honey bees (Apis mellifera). PLoS Pathog 11(3):e1004713. doi:10.1371/journal.ppat.1004713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gauthier L, Tentcheva D, Tournaire M, Dainat B, Cousserans F, Colin ME, Bergoin M (2007) Viral load estimation in asymptomatic honey bee colonies using the quantitative RT-PCR technique. Apidologie 38:426–435

    Article  CAS  Google Scholar 

  • Genersch E, von der Ohe W, Kaatz H, Schroeder A, Otten C, Buchler R, Berg S, Ritter W, Muhlen W, Gisder S, Meixner M, Liebig G, Rosenkranz P (2010) The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41:332–352

    Article  CAS  Google Scholar 

  • Gisder S, Aumeier P, Genersch E (2009) Deformed wing virus: replication and viral load in mites (Varroa destructor). J Gen Virol 90(Pt 2):463–467. doi:10.1099/vir.0.005579-0

    Article  CAS  PubMed  Google Scholar 

  • Gross M (2013) EU ban puts spotlight on complex effects of neonicotinoids. Curr Biol 23(11):R462–R464. doi:10.1016/j.cub.2013.05.030

    Article  CAS  PubMed  Google Scholar 

  • Highfield AC, el Nagar A, Mackinder LCM, Noel L, Hall MJ, Martin SJ, Schroeder DC (2009) Deformed wing virus implicated in overwintering honeybee colony losses. Appl Environ Microbiol 75(22):7212–7220. doi:10.1128/AEM.02227-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou CS, Rivkin H, Slabezki Y, Chejanovsky N (2014) Dynamics of the presence of Israeli acute paralysis virus in honey bee colonies with colony collapse disorder. Viruses-Basel 6(5):2012–2027. doi:10.3390/v6052012

    Article  CAS  Google Scholar 

  • Hunter W, Ellis J, Vanengelsdorp D, Hayes J, Westervelt D, Glick E, Williams M, Sela I, Maori E, Pettis J, Cox-Foster D, Paldi N (2010) Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). PLoS Pathog 6(12):e1001160. doi:10.1371/journal.ppat.1001160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iqbal J, Mueller U (2007) Virus infection causes specific learning deficits in honeybee foragers. Proc R Soc London B 274:1517–1521

    Article  Google Scholar 

  • Li ZG, Chen YP, Zhang SW, Chen SL, Li WF, Yan LM, Shi LG, Wu LM, Sohr A, Su SK (2013) Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L. Plos One 8(10):e77354. doi:10.1371/journal.pone.0077354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XJ, Zhang Y, Yan X, Han RC (2010) Prevention of Chinese sacbrood virus infection in Apis cerana using RNA interference. Curr Microbiol 61:422–428

    Article  CAS  PubMed  Google Scholar 

  • Locke B, Forsgren E, de Miranda JR (2014) Increased tolerance and resistance to virus infections: a possible factor in the survival of Varroa destructor-resistant honey bees (Apis mellifera). PLoS ONE 9(6):e99998. doi:10.1371/journal.pone.0099998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maori E, Lavi S, Mozes-Koch R, Gantman Y, Peretz Y, Edelbaum O, Tanne E, Sela I (2007) Isolation and characterization of Israeli acute paralysis virus, a dicistrovirus affecting honeybees in Israel: evidence for diversity due to intra- and inter-species recombination. J Gen Virol 88:3428–3438

    Article  CAS  PubMed  Google Scholar 

  • Maori E, Paldi N, Shafir S, Kalev H, Tsur E, Glick E, Sela I (2009) IAPV, a bee-affecting virus associated with colony collapse disorder can be silenced by dsRNA ingestion. Insect Mol Biol 18(1):55–60. doi:10.1111/j.1365-2583.2009.00847.x

    Article  CAS  PubMed  Google Scholar 

  • Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE, Powell M, Nikaido S, Schroeder DC (2012) Global honey bee viral landscape altered by a parasitic mite. Science (New York, N.Y.) 336:1304–1306

    Article  CAS  Google Scholar 

  • Martin SJ (2001) The role of Varroa and viral pathogens in the collapse of honeybee colonies: a modelling approach. J Appl Ecol 38 (5):1082–1093

    Google Scholar 

  • Mockel N, Gisder S, Genersch E (2011) Horizontal transmission of deformed wing virus: pathological consequences in adult bees (Apis mellifera) depend on the transmission route. J Gen Virol 92(Pt 2):370–377. doi:10.1099/vir.0.025940-0

    Article  PubMed  CAS  Google Scholar 

  • Moore J, Jironkin A, Chandler D, Burroughs N, Evans DJ, Ryabov EV (2011) Recombinants between deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies. J Gen Virol 92(Pt 1):156–161. doi:10.1099/vir.0.025965-0

    Article  CAS  PubMed  Google Scholar 

  • Nazzi F, Brown SP, Annoscia D et al (2012) Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS pathogens 8(6):e1002735. doi:10.1371/journal.ppat.1002735

    Article  CAS  Google Scholar 

  • Niu J, Meeus I, Cappelle K, Piot N, Smaghe G (2014) The immune response of the small interfering RNA pathway in the defense against bee viruses. Curr Opin Insect Sci 6:22–27. doi:10.1016/j.cois.2014.09.014

    Article  Google Scholar 

  • Ongus JR, Peters D, Bonmatin JM, Bengsch E, Vlak JM, van Oers MM (2004) Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. J Gen Virol 85:3747–3755

    Article  CAS  PubMed  Google Scholar 

  • Ribiere M, Lallemand P, Iscache AL, Schurr F, Celle O, Blanchard P, Olivier V, Faucon JP (2007) Spread of infectious chronic bee paralysis virus by honeybee (Apis mellifera L.) feces. Appl Environ Microbiol 73:7711–7716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribiere M, Olivier V, Blanchard P (2010) Chronic bee paralysis: A disease and a virus like no other? J Invertebr Pathol Suppl. 103(1):S120–S131. doi:10.1016/j.jip.2009.06.013

    Article  Google Scholar 

  • Rinderer TE, Harris JW, Hunt GJ, de Guzman LI (2010) Breeding for resistance to Varroa destructor in North America. Apidologie 41:409–424

    Article  Google Scholar 

  • Runckel C, Flenniken ML, Engel JC, Ruby JG, Ganem D, Andino R, Derisi JL (2011) Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS ONE 6(6):e20656. doi:10.1371/journal.pone.0020656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryabov EV, Wood GR, Fannon JM, Moore JD, Bull JC, Chandler D, Mead A, Burroughs N, Evans DJ (2014) A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro transmission. Plos Pathogens 10(6):e1004230. doi:10.1371/journal.ppat.1004230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmehl DR, Teal PEA, Frazier JL, Grozinger CM (2014) Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). J Insect Physiol 71:177–190. doi:10.1016/j.jinsphys.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  • Shah KS, Evans EC, Pizzorno MC (2009) Localization of deformed wing virus (DWV) in the brains of the honeybee, Apis mellifera Linnaeus. Virology J 6:182. doi:10.1186/1743-422X-6-182

    Article  CAS  Google Scholar 

  • Shen M, Yang X, Cox-Foster D, Cui L (2005) The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology 342:141–149

    Article  CAS  PubMed  Google Scholar 

  • Soroker V, Hetzroni A, Yakobson B, David D, David A, Voet H, Slabezki Y, Efrat H, Levski S, Kamer Y, Klinberg E, Zioni N, Inbar S, Chejanovsky N (2011) Evaluation of colony losses in Israel in relation to the incidence of pathogens and pests. Apidologie 42:192–199

    Article  Google Scholar 

  • Stokstad E (2007) The case of the empty hives. Science 316:970–972

    Article  CAS  PubMed  Google Scholar 

  • Tentcheva D, Gauthier L, Bagny L, Fievet J, Dainat B, Cousserans F, Colin ME, Bergoin M (2006) Comparative analysis of deformed wing virus (DWV) RNA in Apis mellifera and Varroa destructor. Apidologie 37:41–50

    Article  CAS  Google Scholar 

  • Toplak I, Ciglenecki UJ, Aronstein K et al (2013) Chronic bee paralysis virus and Nosema ceranae experimental co-infection of winter honey bee workers (Apis mellifera L.). Viruses-Basel, 5(9), 2282–2297. doi:10.3390/v5092282

    Article  Google Scholar 

  • van Engelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Cox-Foster D, Chen YP, Underwood R, Tarpy DR, Pettis JS (2009) Colony Collapse disorder: a descriptive study. PLoS ONE 4(8):e6481. doi:10.1371/journal.pone.0006481

    Article  CAS  Google Scholar 

  • Yue C, Genersch E (2005) RT-PCR analysis of deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). J Gen Virol 86:3419–3424

    Article  CAS  PubMed  Google Scholar 

  • Zioni N, Soroker V, Chejanovsky N (2011) Replication of Varroa destructor virus 1 (VDV-1) and a Varroa destructor virus 1-deformed wing virus recombinant (VDV-1-DWV) in the head of the honey bee. Virology 417(1):106–112. doi:10.1016/j.virol.2011.05.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Reut Bernheim for her support in drawing Fig. 1. This work was partially supported by Grants of the Chief Scientist of the Ministry of Agriculture (NC, YS) number 131-1723 and 131-1815.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nor Chejanovsky .

Editor information

Editors and Affiliations

Glossary

Genome

A DNA or RNA molecule, depending on the virus, bearing all the information the virus needs to replicate in the cells of its host

Viral genomic copies

Number of viral genomes that bear the genetic information that allows the virus to produce more viral particles

Viral loads

Usually refers to the number of viral genomic copies which is the most common method of estimating honey bee viruses, but it could also refer as well to the number of infectious virus particles

Viral genomic replication

The process by which the virus produces new copies, replicas, of itself, that are packed in new viral particles

Immunosuppression

Weakening of the immune system, body defenses

Down-regulation of genes

A molecular process that results in lower expression of the proteins that are products of these genes

Genomic homology

Similarity of nucleotide sequences between virus genomes

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chejanovsky, N., Slabezki, Y. (2017). Honey Bee Viruses—Pathogenesis, Mechanistic Insights, and Possible Management Projections. In: Vreeland, R., Sammataro, D. (eds) Beekeeping – From Science to Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-60637-8_7

Download citation

Publish with us

Policies and ethics