Skip to main content

Sublethal Effects of Pesticides on Queen-Rearing Success

  • Chapter
  • First Online:
Beekeeping – From Science to Practice

Abstract

The effects of sublethal pesticide exposure on queen emergence and immunity were measured. Queen-rearing colonies were fed pollen with chlorpyrifos (CPF) alone (pollen-1) and with CPF and the fungicide Pristine® (pollen-2). Fewer queens emerged when larvae were reared in colonies fed pollen-1 or pollen-2 than when larvae were reared in outside colonies without contaminated pollen. Larvae grafted from and reared in colonies fed pollen-2 had the lowest rate of queen emergence. Deformed wing virus (DWV) and black queen cell virus were found in nurse bees from colonies fed pollen-1 or pollen-2 and in outside colonies. The viruses also were detected in queen larvae. However, we did not detect virus in emerged queens grafted from and reared in outside colonies. In contrast, DWV was found in all emerged queens grafted from colonies fed pollen-1 or pollen-2 and reared either in outside hives or those fed pollen-1 or pollen-2. The results suggest that sublethal exposure of CPF alone but especially when Pristine® is added reduces queen emergence possibly due to compromised immunity in developing queens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adigun AA, Seidler FJ, Slotkin TA (2010) Disparate developmental neurotoxicants converge on the cyclic AMP signaling cascade revealed by transcriptional profiles in vitro and in vivo. Brain Res 1316:1–16

    Article  CAS  PubMed  Google Scholar 

  • Arnoult D, Carneiro L, Tattoli I, Girardin SE (2009) The role of mitochondria in cellular defense against microbial infection. Semin Immunol 21:223–232

    Article  CAS  PubMed  Google Scholar 

  • Berthoud H, Imdorf A, Haueter M, Radloff S, Neumann P (2010) Virus infections and winter losses of honey bee colonies (Apis mellifera). J Apic Res 49:60–65

    Article  Google Scholar 

  • Chen YP, Pettis JS, Feldlaufer MF (2005) Detection of multiple viruses in queens of the honey bee, Apis mellifera L. J Invert Pathol 90:118–121

    Article  Google Scholar 

  • De Miranda JR, Fries I (2008) Venereal and vertical transmission of deformed wing virus in honeybees (Apis mellifera L.). J Invertebr Pathol 98:184–189

    Article  PubMed  Google Scholar 

  • De Miranda JR, Genersch E (2010) Deformed wing virus. J Invertebr Pathol 103:48–61

    Article  CAS  Google Scholar 

  • DeGrandi-Hoffman G, Chen Y, Simonds R (2013) The effects of pesticides on queen rearing and virus titers in honey bees (Apis mellifera L.). Insects 4:71–89, doi:10.3390/insects4010071

    Article  Google Scholar 

  • DeGrandi-Hoffman G, Chen Y, Watkins deJong E et al (2015) Effects of oral exposure to fungicides on honey bee nutrition and virus levels. J Econ Entomol 108:2518–2528, doi:10.1093/jee/tov251

    Article  CAS  Google Scholar 

  • DiPrisco G, Zhang X, Pennacchio F et al (2011) Viral dynamics of persistent and acute virus infections in honey bee. Viruses 3:2425–2441

    Google Scholar 

  • Duysen EG, Li B, Xie W, Schopfer LM, Anderson RS, Broomfield CA, Lockridge O (2001) Evidence for nonacetylcholinesterase targets of organophosphorus nerve agent: Supersensitivity of acetylcholinesterase knockout mouse to VX lethality. J Pharmacol Exp Ther 299:528–535

    CAS  PubMed  Google Scholar 

  • Gauthier L, Ravallec M, Tournaire M, Cousserans F, Bergoin M, Dainat B, deMiranda JR (2011) Viruses associated with ovarian degeneration in Apis mellifera L. queens. PLoS ONE 6:e16217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genersch E, von der Ohe W, Kaatz H et al (2010) The German bee monitoring project: A long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41:332–352

    Google Scholar 

  • Highland AC, El Nagar A, Mackinder LCM et al (2009) Deformed wing virus implicated in overwintering honeybee colony losses. Appl Environ Microbiol 75:7212–7220

    Google Scholar 

  • Iqbal J, Mueller U (2007) Virus infection causes specific learning deficits in honeybee foragers. Proc Roy Soc Lond B Biol Sci 274:1517–1521

    Article  Google Scholar 

  • Laidlaw HH (1979) Contemporary queen rearing. Dadant & Sons, Hamilton, IL, USA

    Google Scholar 

  • Li Q (2007) New mechanism of organophosphorous pesticide-induced immunotoxicity. J Nippon Med Sch 74:92–105

    Article  CAS  PubMed  Google Scholar 

  • Locke B, Forsgren E, Fries I, deMiranda JR (2012) Acaricide treatment affects viral dynamics in Varroa destructor-infested honey bee colonies via both host physiology and mite control. Appl Environ Microbiol 78:227–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, vanEngelsdorp D, Pettis JS (2010) High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 5:e975

    Article  CAS  Google Scholar 

  • Pettis JS, vanEngelsdorp D, Johnson J, Dively G (2012) Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften 99:153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettis JS, Lichtenberg EM, Andree M, Stitzinger J, Rose R, vanEngelsdorp D (2013) Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS ONE 8(7):e70182. doi:10.1371/journal.pone.0070182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pope CN (1999) Organophosphorus pesticides: they all have the same mechanism of toxicity? J Toxicol Environ Health Part B Crit Rev 2:161–181

    Article  CAS  Google Scholar 

  • Wu JY, Smart MD, Anelli CM, Sheppard WS (2012) Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. J Invertebr Pathol 109:326–329

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Hamel C, Vujanovic V, Gan Y (2011) Fungicide: modes of action and possible impact on nontarget microorganisms. ISRN Ecol. doi:10.5402/2011/130289

    Article  Google Scholar 

  • Yue C, Schroder M, Bienefeld K, Genersch E (2006) Detection of viral sequences in semen of honeybees (Apis mellifera): evidence for vertical transmission of viruses through drones. J Invertebr Pathol 92:105–108

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria DeGrandi-Hoffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

DeGrandi-Hoffman, G., Chen, Y. (2017). Sublethal Effects of Pesticides on Queen-Rearing Success. In: Vreeland, R., Sammataro, D. (eds) Beekeeping – From Science to Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-60637-8_4

Download citation

Publish with us

Policies and ethics