Skip to main content

Introduction to Mathematical Modeling of Blood Flow Control in the Kidney

  • Conference paper
  • First Online:
Women in Mathematical Biology

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 8))

  • 755 Accesses

Abstract

Besides its best known role in the excretion of metabolic wastes and toxins, the kidney also plays an indispensable role in regulating the balance of water, electrolytes, acid–base species, blood volume, and blood pressure. To properly fulfill its functions, it is crucial for the kidney to exercise hemodynamic control. In this review, we describe representative mathematical models that have been developed to better understand the kidney’s autoregulatory processes. In particular, we consider mathematical models that simulate renal blood flow regulation by means of key autoregulatory mechanisms: the myogenic response and tubuloglomerular feedback. We discuss the extent to which these modeling efforts have expanded the understanding of renal functions in health and diseases.

The original version of this chapter was revised. An erratum to this chapter can be found at https://doi.org/10.1007/978-3-319-60304-9_13

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bank, N., Mower, P., Aynedjian, H., Wilkes, B., Silverman, S.: Sorbinil prevents glomerular hyperperfusion in diabetic rats. Am. J. Physiol.256, F1000–F1006 (1989)

    Google Scholar 

  2. Barfred, M., Mosekilde, E., Holstein-Rathlou, N.: Bifurcation analysis of nephron pressure and flow regulation. Chaos6, 280–287 (1996)

    Article  Google Scholar 

  3. Carmines, P., Ohishi, K., Ikenaga, H.: Functional impairment of renal afferent arteriolar voltage-gated calcium channels in rats with diabetes mellitus. J. Clin. Invest.98, 2564–2571 (1996)

    Article  Google Scholar 

  4. Chen, J., Sgouralis, I., Moore, L., Layton, H., Layton, A.: A mathematical model of the myogenic response to systolic pressure in the afferent arteriole. Am. J. Physiol. Ren. Physiol.300, F669–F681 (2011)

    Article  Google Scholar 

  5. Ciocanel, V., Stepien, T., Edwards, A., Layton, A.: Modeling autoregulation of the afferent arteriole of the rat kidney. In: NIMBioS Proceedings, Springer (2016)

    Google Scholar 

  6. Cupples, W., Braam, B.: Assessment of renal autoregulation. Am. J. Physiol. Ren. Physiol.292, F1105–F1123 (2007)

    Article  Google Scholar 

  7. Edwards, A., Layton, A.: Calcium dynamics underlying the afferent arteriole myogenic response. Am. J. Physiol. Ren. Physiol.306, F34–F48 (2014)

    Article  Google Scholar 

  8. Gonzalez-Fernandez, J., Ermentrout, B.: On the origin and dynamics of the vasomotion of small arteries. Math. Biosci.119, 127–167 (1994)

    Article  MATH  Google Scholar 

  9. Holstein-Rathlou, N., Leyssac, P.: Oscillations in the proximal intratubular pressure: a mathematical model. Am. J. Physiol. (Renal Fluid Electrolyte Physiol 21)252, F560–F572 (1987)

    Google Scholar 

  10. Holstein-Rathlou, N., Marsh, D.: A dynamic model of the tubuloglomerular feedback mechanism. Am. J. Physiol. (Renal Fluid Electrolyte Physiol 27)258, F1448–F1459 (1990)

    Google Scholar 

  11. Holstein-Rathlou, N., Marsh, D.: Renal blood flow regulation and arterial pressure fluctuations: a case study in nonlinear dynamics. Physiol. Rev.74, 637–681 (1994)

    Google Scholar 

  12. Holstein-Rathlou, N., Wagner, A., Marsh, D.: Tubuloglomerular feedback dynamics and renal blood flow autoregulation in rats. Am. J. Physiol. (Renal Fluid Electrolyte Physiol 29)260, F53–F68 (1991)

    Google Scholar 

  13. Layton, A.: Feedback-mediated dynamics in a model of a compliant thick ascending limb. Math. Biosci.228, 185–194 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Layton, H., Pitman, E., Moore, L.: Bifurcation analysis of TGF-mediated oscillations in SNGFR. Am. J. Physiol. (Renal Fluid Electrolyte Physiol 30)261, F904–F919 (1991)

    Google Scholar 

  15. Layton, H., Pitman, E., Moore, L.: Instantaneous and steady-state gains in the tubuloglomerular feedback system. Am. J. Physiol. Ren. Physiol.268, F163–F174 (1995)

    Google Scholar 

  16. Layton, H., Pitman, E., Moore, L.: Nonlinear filter properties of the thick ascending limb. Am. J. Physiol. (Renal Fluid Electrolyte Physiol 42)273, F625–F634 (1997)

    Google Scholar 

  17. Layton, H., Pitman, E., Moore, L.: Spectral properties of the tubuloglomerular feedback system. Am. J. Physiol. (Renal Fluid Electrolyte Physiol 42)273, F635–F649 (1997)

    Google Scholar 

  18. Layton, H., Pitman, E., Moore, L.: Limit-cycle oscillations and tubuloglomerular feedback regulation of distal sodium delivery. Am. J. Physiol. Ren. Physiol.278, F287–F301 (2000)

    Google Scholar 

  19. Layton, A., Moore, L., Layton, H.: Multistability in tubuloglomerular feedback and spectral complexity in spontaneously hypertensive rats. Am. J. Physiol. Ren. Physiol.291, F79–F97 (2006)

    Article  Google Scholar 

  20. Loutzenhiser, R., Bidani, A., Chilton, L.: Renal myogenic response: kinetic attributes and physiologic role. Circ. Res.90, 1316–1324 (2002)

    Article  Google Scholar 

  21. Loutzenhiser, R., Griffin, K., Williamson, G., Bidani, A.: Renal autoregulation: new perspectives regarding the protective and regulatory roles of the underlying mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol.290, R1153–R1167 (2006)

    Article  Google Scholar 

  22. Ryu, H., Layton, A.: Effect of tubular inhomogeneities on feedback-mediated dynamics of a model of a thick ascending limb. Med. Math. Biol.30, 191–212 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ryu, H., Layton, A.: Tubular fluid flow and distal nacl delivery mediated by tubuloglomerular feedback in the rat kidney. J. Math. Biol.68, 1023–1049 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sgouralis, I., Layton, A.: Autoregulation and conduction of vasomotor responses in a mathematical model of the rat afferent arteriole. Am. J. Physiol. Ren. Physiol.303, F229–F239 (2012)

    Article  Google Scholar 

  25. Sgouralis, I., Layton, A.: Theoretical assessment of renal autoregulatory mechanisms. Am. J. Physiol. Ren. Physiol.306, F1357–F1371 (2014)

    Article  Google Scholar 

  26. Sgouralis, I., Layton, A.T.: Mathematical modeling of renal hemodynamics in physiology and pathophysiology. Math. Biosci.264, 8–20 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sgouralis, I., Layton, A.: Modeling blood flow and oxygenation in a diabetic rat kidney. In: NIMBioS Proceedings, Springer (2016)

    MATH  Google Scholar 

  28. Thomson, S., Vallon, V., Blantz, R.: Resetting protects efficiency of tubuloglomerular feedback. Kidney Int. Suppl.67, S65–S70 (1998)

    Article  Google Scholar 

  29. Vallon, V.: The proximal tubule in the pathophysiology of the diabetic kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol.300, R1009–R1022 (1996)

    Article  Google Scholar 

  30. Williamson, G., Loutzenhiser, R., Wang, X., Griffin, K., Bidani, A.: Systolic and mean blood pressures and afferent arteriolar myogenic response dynamics: a modeling approach. Am. J. Physiol. Regul. Integr. Comp. Physiol.295, R1502–R1511 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work is the product of a workshop and short-term visits supported by the National Institute for Mathematical and Biological Synthesis, an Institute sponsored by the National Science Foundation through NSF Award #DBI-1300426, with additional support from The University of Tennessee, Knoxville. Support was also provided by the National Institutes of Health: National Institute of Diabetes and Digestive and Kidney Diseases and by the National Science Foundation, via grants #DK089066 and #DMS-1263995 to AT Layton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita T. Layton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s) and the Association for Women in Mathematics

About this paper

Cite this paper

Layton, A.T., Edwards, A. (2017). Introduction to Mathematical Modeling of Blood Flow Control in the Kidney. In: Layton, A., Miller, L. (eds) Women in Mathematical Biology. Association for Women in Mathematics Series, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-60304-9_4

Download citation

Publish with us

Policies and ethics