Skip to main content

Biology and Pathology of Perineuronal Satellite Cells in Sensory Ganglia

  • Chapter
  • First Online:
Biology and Pathology of Perineuronal Satellite Cells in Sensory Ganglia

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 226))

Abstract

A cell sheath enveloping the body of the neurons in sensory ganglia was mentioned for the first time in 1836 by Valentin, a pupil of Purkinje. In some illustrations of his paper, the nuclei of cells adjacent to the surface of the nerve cell body, both in the trigeminal ganglion and in the ganglia of the autonomic nervous system, were clearly shown (Fig. 1.1a) even though they were misinterpreted as pigment granules. Since Remak (1838) denied the existence of this perineuronal sheath, Valentin (1839) provided a more detailed description of it, illustrated with new drawings (Fig. 1.1b), the captions of which gave a correct interpretation of the satellite cell nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamo NJ, Daigneault EA (1972) Desmosome-like junctions in the spiral ganglia of cats. Am J Anat 135:141–146

    CAS  PubMed  Google Scholar 

  • Adamo NJ, Daigneault EA (1973) Ultrastructural features of neurons and nerve fibres in the spiral ganglia of cats. J Neurocytol 2:91–103

    CAS  PubMed  Google Scholar 

  • Adoutte A, Balmefrézol M, Beisson J, André J (1972) The effects of erythromycin and chloramphenicol on the ultrastructure of mitochondria in sensitive and resistant strains of Paramecium. J Cell Biol 54:8–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed MM (1977) Changes in the ultrastructure of satellite cells of slow loris in tricresylphosphate poisoning. Acta Neuropathol 37:173–175

    CAS  PubMed  Google Scholar 

  • Ajima H, Kawano Y, Takagi R, Aita M, Gomi H, Byers MR, Maeda T (2001) The exact expression of glial fibrillary acidic protein (GFAP) in trigeminal ganglion and dental pulp. Arch Histol Cytol 64:503–511

    CAS  PubMed  Google Scholar 

  • Alvarez MP, Solas MT, Suarez I, Fernandez B (1989) Glial fibrillary acidic protein-like immunoreactivity in cat satellite cells of sympathetic ganglia. Acta Anat 136:9–11

    CAS  PubMed  Google Scholar 

  • Andres KH (1961) Untersuchungen über den Feinbau von Spinalganglien. Z Zellforsch 55:1–48

    CAS  PubMed  Google Scholar 

  • Andres KH (1963) Elektronenmikroskopische Untersuchungen über Strukturveränderungen im Zytoplasma von Spinalganglienzellen der Ratte nach Bestrahlung mit 185 MeV-Protonen. Z Zellforsch 60:633–658

    CAS  PubMed  Google Scholar 

  • Andres KH, Larsson B, Rexed B (1963) Zur Morphogenese der akuten Strahlenschädigung in Rattenspinalganglien nach Bestrahlung mit 185 MeV-Protonen. Z Zellforsch 60:532–559

    CAS  PubMed  Google Scholar 

  • Anzil AP, Blinzinger K, Herrlinger H (1976) Fenestrated blood capillaries in rat cranio-spinal sensory ganglia. Cell Tissue Res 167:563–567

    CAS  PubMed  Google Scholar 

  • Aoki E, Semba R, Kashiwamata S (1991) Evidence for the presence of L-arginine in the glial components of the peripheral nervous system. Brain Res 559:159–162

    CAS  PubMed  Google Scholar 

  • Aoki E, Takeuchi IK, Shoji R, Semba R (1993) Localization of nitric oxide-related substances in the peripheral nervous tissues. Brain Res 620:142–145

    CAS  PubMed  Google Scholar 

  • Arnold W (1970) Ungewöhnlich grosse sphärische Lipidkörper im Ependym und Subependym des Feuersalamanders. Z Zellforsch 106:523–538

    CAS  PubMed  Google Scholar 

  • Arvidson B (1979) Distribution of intravenously injected protein tracers in peripheral ganglia of adult mice. Exp Neurol 63:388–410

    CAS  PubMed  Google Scholar 

  • Averill S, Delcroix J-D, Michael GJ, Tomlinson DR, Fernyhough P, Priestley JV (2001) Nerve growth factor modulates the activation status and fast axonal transport of ERK ½ in adult nociceptive neurones. Mol Cell Neurosci 18:183–196

    CAS  PubMed  Google Scholar 

  • Bär K-J, Schurigt U, Scholze A, Segond von Banchet G, Stopfel N, Bräuer R, Halbhuber K-J, Schaible H-G (2004) The expression and localization of somatostatin receptors in dorsal root ganglion neurons of normal and monoarthritic rats. Neuroscience 127:197–206

    PubMed  Google Scholar 

  • Becker C-H (1968) Die Multiplikation des Aujeszkyschen Virus in den Spinalganglien des Kaninchens. Arch Exp Veterinaermed 22:363–381

    CAS  Google Scholar 

  • Belzer V, Shraer N, Hanani M (2010) Phenotypic changes in satellite glial cells in cultured trigeminal ganglia. Neuron Glia Biol 6:237–243

    PubMed  Google Scholar 

  • Bennett G, Hemming R (1989) Ultrastructural localization of CMPase, TPPase, and NADPase activity in neurons, satellite cells, and Schwann cells in frog dorsal root ganglia. J Histochem Cytochem 37:165–172

    Article  CAS  PubMed  Google Scholar 

  • Berger UV, Hediger MA (2000) Distribution of the glutamate transporters GLAST and GLT-1 in rat circumventricular organs, meninges, and dorsal root ganglia. J Comp Neurol 421:385–399

    CAS  PubMed  Google Scholar 

  • Bernardini N, De Stefano ME, Tata AM, Biagioni S, Augusti-Tocco G (1998) Neuronal and non-neuronal cell populations of the avian dorsal root ganglia express muscarinic acetylcholine receptors. Int J Dev Neurosci 16:365–377

    CAS  PubMed  Google Scholar 

  • Bernardini N, Levey AI, Augusti-Tocco G (1999) Rat dorsal root ganglia express m1-m4 muscarinic receptor proteins. J Peripher Nerv Syst 4:222–232

    CAS  PubMed  Google Scholar 

  • Bertrand I, Guillain J (1933) La microglie et l’oligodendroglie ganglionnaires. C R Soc Biol 113:382–383

    Google Scholar 

  • Bidder FH (1847) Zur Lehre von dem Verhältnis der Ganglienkörper zu den Nervenfasern. Neue Beiträge, nebst einem Anlange von A W Volkmann. Breitkopf und Haertel, Leipzig

    Google Scholar 

  • Bombardi C, Grandis A, Nenzi A, Giurisato M, Cozzi B (2010) Immunohistochemical localization of substance P and cholecystochinin in the dorsal root ganglia and spinal cord of the bottlenose dolphin (Tursiops truncatus). Anat Rec 293:477–484

    CAS  Google Scholar 

  • Braun N, Sévigny J, Robson SC, Hammer K, Hanani M, Zimmermann H (2004) Association of the Ecto-ATPase NTPDase2 with glial cells of the peripheral nervous system. Glia 45:124–132

    PubMed  Google Scholar 

  • Brizzee KR (1949) Histogenesis of the supporting tissue in the spinal and the sympathetic trunk ganglia in the chick. J Comp Neurol 91:129–146

    CAS  PubMed  Google Scholar 

  • Brown DA, Galvan M (1977) Influence of neuroglial transport on the action of γ-aminobutyric acid on mammalian ganglion cells. Br J Pharmacol 59:373–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buehler A (1897) Untersuchungen über den Bau der Nervenzellen. Verh Phys Ges 31:285–392

    Google Scholar 

  • Bunge MB, Bunge RP, Peterson ER, Murray MR (1967) Light and electron microscope study of long term organized cultures of rat dorsal root ganglia. J Cell Biol 32:439–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burdyga G, Lal S, Spiller D, Jiang W, Thompson D, Attwood S, Saeed S, Grundy D, Varro A, Dimaline R, Dockray J (2003) Localization of orexin-1 receptors to vagal afferent neurons in the rat and humans. Gastroenterology 124:129–139

    CAS  PubMed  Google Scholar 

  • Campana WM, Myers RR (2003) Exogenous erythropoietin protects against dorsal root ganglion apoptosis and pain following peripheral nerve injury. Eur J Neurosci 18:1497–1506

    PubMed  Google Scholar 

  • Carlton SM, Hargett GL (2007) Colocalization of metabotropic glutamate receptors in rat dorsal root ganglion cells. J Comp Neurol 501:780–789

    CAS  PubMed  Google Scholar 

  • Carozzi VA, Canta A, Oggioni N, Ceresa C, Marmiroli P, Konvalinka J, Zoia C, Bossi M, Ferrarese C, Tredici G, Cavaletti G (2008) Expression and distribution of ‘high affinity’ glutamate transporters GLT1, GLAST, EAAC1 and of GCPII in the rat peripheral nervous system. J Anat 213:539–546

    PubMed  PubMed Central  Google Scholar 

  • Carr VM, Simpson SB Jr (1978) Proliferative and degenerative events in the early development of chick dorsal root ganglia. I. Normal development. J Comp Neurol 182:727–740

    CAS  PubMed  Google Scholar 

  • Castillo C, Norcini M, Martin Hernandez LA, Correa G, Blanck TJJ, Recio-Pinto E (2013) Satellite glia cells in dorsal root ganglia express functional NMDA receptors. Neuroscience 240:135–146

    CAS  PubMed  Google Scholar 

  • Cecchini T, Ferri P, Ciaroni S, Cuppini R, Ambrogini P, Papa S, Del Grande P (1999) Postnatal proliferation of DRG non-neuronal cells in vitamin E-deficient rats. Anat Rec 256:109–115

    CAS  PubMed  Google Scholar 

  • Cece R, Petruccioli MG, Pizzini G, Cavaletti G, Tredici G (1995) Ultrastructural aspects of DRG satellite cell involvement in experimental cisplatin neuronopathy. J Submicrosc Cytol Pathol 27:417–425

    CAS  PubMed  Google Scholar 

  • Cervós-Navarro J (1960) Elektronenmikroskopische Untersuchungen an Spinalganglien. II Satellitenzellen. Arch Psychiatr Nervenkrank 200:267–283

    Article  Google Scholar 

  • Cervós-Navarro J (1962) Elektronenmikroskopische Befunde an Spinalganglienzellen der Ratte nach Ischiadikotomie. IV. Int Kongr Neuropathol 2:99–104. Thieme, Stuttgart

    Google Scholar 

  • Chang LW, Hartmann HA (1972) Ultrastructural studies of the nervous system after mercury intoxication. I. Pathological changes in the nerve cell bodies. Acta Neuropathol 20:122–138

    CAS  PubMed  Google Scholar 

  • Chang PL, Taylor JJ, Wozniak W, Young PA (1973) An ultrastructural study of sympathetic ganglion satellite cells in the rat. I. Normal and X-ray irradiated satellite cells. J Neural Transm 34:215–234

    CAS  PubMed  Google Scholar 

  • Cherkas PS, Huang T-Y, Pannicke T, Tal M, Reichenbach A, Hanani M (2004) The effects of axotomy on neurons and satellite glial cells in mouse trigeminal ganglion. Pain 110:290–298

    PubMed  Google Scholar 

  • Christie K, Koshy D, Cheng C, Guo G, Martinez JA, Duraikannu A, Zochodne DW (2015) Intraganglionic interactions between satellite cells and adult sensory neurons. Mol Cell Neurosci 67:1–12

    CAS  PubMed  Google Scholar 

  • Chudler EH, Anderson LC, Byers MR (1997) Trigeminal ganglion neuronal activity and glial fibrillary acidic protein immunoreactivity after inferior alveolar nerve crush in the adult rat. Pain 73:141–149

    CAS  PubMed  Google Scholar 

  • Ciaroni S, Cecchini T, Cuppini R, Ferri P, Ambrogini P, Bruno C, Del Grande P (2000) Are there proliferating neuronal precursors in adult rat dorsal root ganglia? Neurosci Lett 281:69–71

    CAS  PubMed  Google Scholar 

  • Citkowitz E, Holtzman E (1973) Peroxisomes in dorsal root ganglia. J Histochem Cytochem 21:34–41

    CAS  PubMed  Google Scholar 

  • Coggeshall RE (1967) A light and electron microscope study of the abdominal ganglion of Aplysia californica. J Neurophysiol 30:1263–1287

    CAS  PubMed  Google Scholar 

  • Cook ML, Stevens JG (1973) Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence for intra-axonal transport of infection. Infect Immun 7:272–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper E (1984) Synapse formation among developing sensory neurones from rat nodose ganglia grown in tissue culture. J Physiol 351:263–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Copray JCVM, Mantingh I, Brouwer N, Biber K, Küst BM, Liem RSB, Huitinga I, Tilders FJH, Van Dam A-M, Boddeke HWGM (2001) Expression of interleukin-1 beta in rat dorsal root ganglia. J Neuroimmunol 118:203–211

    CAS  PubMed  Google Scholar 

  • Corsetti G, Rodella L, Rezzani R, Stacchiotti A, Bianchi R (2000) Cytoplasmic changes in satellite cells of spinal ganglia induced by cisplatin treatment in rats. Ultrastruct Pathol 24:259–265

    CAS  PubMed  Google Scholar 

  • Courvoisier LG (1868) Über die Zellen der Spinalganglien sowie des Sympathicus beim Frosch. Arch Mikr Anat 4:125–145

    Google Scholar 

  • Cravioto H, Merker HJ (1963) Elektronenmikroskopische Untersuchungen an Satellitenzellen der sympathischen Ganglien des Menschen. Arch Psychiatr Nervenkr 204:1–10

    CAS  Google Scholar 

  • D’Amico-Martel A, Noden DM (1983) Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am J Anat 166:445–468

    PubMed  Google Scholar 

  • De Castro F (1921) Estudio sobre los ganglios sensitivos del hombre en estado normal y patológico. Formas celulares típicas y atípicas. Trab Lab Invest Biol Univ Madrid 19:241–340

    Google Scholar 

  • De Castro F (1932) Sensory ganglia of the cranial and spinal nerves. Normal and pathological. In: Penfield W (ed) Cytology and cellular pathology of the nervous system, vol 1. Hoeber, New York, pp 91–143

    Google Scholar 

  • De Castro F (1946) Sobre el comportamiento y significacion de la oligodendroglia en la substancia gris central y de los gliocitos en los ganglios nerviosos perifericos. Arch Histol (Buenos Aires) 2:317–343

    Google Scholar 

  • de Groat WC (1972) GABA-depolarization of a sensory ganglion: antagonism by picrotoxin and bicuculline. Brain Res 38:429–432

    PubMed  Google Scholar 

  • de Groat WC, Lalley PM, Saum WR (1972) Depolarization of dorsal root ganglia in the cat by GABA and related amino acids: antagonism by picrotoxin and bicuculline. Brain Res 44:273–277

    PubMed  Google Scholar 

  • De Koninck P, Carbonetto S, Cooper E (1993) NGF induces neonatal rat sensory neurons to extend dendrites in culture after removal of satellite cells. J Neurosci 13:577–585

    PubMed  PubMed Central  Google Scholar 

  • Della Pietra V (1937) Contributo allo studio istologico dei gangli spinali. Riv Neurol 10:588–595

    Google Scholar 

  • Detwiler SR (1937) Application of vital dyes to the study of sheath cell origin. Proc Soc Exp Biol Med 37:380–382

    Google Scholar 

  • Devor M, Seltzer Z (1999) Pathophysiology of damaged nerves in relation to chronic pain. In: Wall PD, Melzack R (eds) Textbook of pain, 4th edn. Churcill Livingston, London, pp 129–164

    Google Scholar 

  • Devor M, Govrin-Lippmann R, Frank I, Raber P (1985) Proliferation of primary sensory neurons in adult rat dorsal root ganglion and the kinetics of retrograde cell loss after sciatic nerve section. Somatosens Res 3:139–167

    CAS  PubMed  Google Scholar 

  • Dillard SH, Cheatham WJ, Moses HL (1972) Electron microscopy of zosteriform herpes simplex infection in the mouse. Lab Invest 26:391–402

    CAS  PubMed  Google Scholar 

  • Dixon JS (1966) The fine structure of parasympathetic nerve cells in the otic ganglia of the rabbit. Anat Rec 156:239–252

    Google Scholar 

  • Djukic B, Casper KB, Philpot BD, Chin L-S, McCarthy KD (2007) Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci 27:11354–11365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dogiel AS (1896) Der Bau der Spinalganglien bei den Säugetieren. Anat Anz 12:140–152

    Google Scholar 

  • Dogiel AS (1897) Zur Frage über den feineren Bau der Spinalganglien und deren Zellen bei Säugetieren. Int Monatsschr Anat Physiol 14:73–116

    Google Scholar 

  • Dohrn A (1891) Nervenfaser und Ganglienzelle. Histogenetische Untersuchungen. Mittheil Zool Station Neapel 10:255–341

    Google Scholar 

  • Donegan M, Kernisant M, Cua C, Jasmin L, Ohara PT (2013) Satellite glial cell proliferation in the trigeminal ganglia after chronic constriction injury of the infraorbital nerve. Glia 61:2000–2008

    PubMed  PubMed Central  Google Scholar 

  • Donelli G, D’Uva V, Paoletti L (1975) Ultrastructure of gliosomes in ependymal cells of the lizard. J Ultrastruct Res 50:253–263

    CAS  PubMed  Google Scholar 

  • Dublin P, Hanani M (2007) Satellite glial cells in sensory ganglia: their possible contribution to inflammatory pain. Brain Behav Immun 21:592–598

    CAS  PubMed  Google Scholar 

  • Dubois-Dalcq M, Menu R, Buyse M (1972) Influence of fatty acids on fine structure of cultured neurons. An experimental approach to Refsum’s disease. J Neuropathol Exp Neurol 31:645–667

    CAS  PubMed  Google Scholar 

  • Dubový P, Klusáková I, Svíženská I, Brázda V (2010) Satellite glial cells express IL-6 and corresponding signal-transducing receptors in the dorsal root ganglia of rat neuropathic pain model. Neuron Glia Biol 6:73–83

    PubMed  Google Scholar 

  • Duchen LW, Scaravilli F (1977) Quantitative and electron microscopic studies of sensory ganglion cells of the Sprawling mouse. J Neurocytol 6:465–481

    CAS  PubMed  Google Scholar 

  • Eames RA, Gamble HJ (1970) Schwann cell relationships in normal human cutaneous nerves. J Anat 106:417–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebendal T (1975) Effects of nerve growth factor on the synthesis of nucleic acids and proteins in cultured chick embryo trigeminal ganglia. Zoon 3:159–167

    CAS  Google Scholar 

  • Ehrlich P (1886) Ueber die Methylenblaureaction der lebenden Nervensubstanz. Dtsch Med Wochenschr 12:49–52

    Google Scholar 

  • Elfvin L-G, Forsman C (1978) The ultrastructure of junctions between satellite cells in mammalian sympathetic ganglia as revealed by freeze-etching. J Ultrastruct Res 63:261–274

    CAS  PubMed  Google Scholar 

  • Elfvin L-G, Björklund H, Dahl D, Seiger A (1987) Neurofilament-like and glial fibrillary acidic protein-like immunoreactivities in rat and guinea-pig sympathetic ganglia in situ and after perturbation. Cell Tissue Res 250:79–86

    CAS  PubMed  Google Scholar 

  • Elson K, Speck P, Simmons A (2003) Herpes simplex virus infection of murine sensory ganglia induces proliferation of neuronal satellite cells. J Gen Virol 84:1079–1084

    CAS  PubMed  Google Scholar 

  • Elson K, Ribeiro RM, Perelson AS, Simmons A, Speck P (2004) The life span of ganglionic glia in murine sensory ganglia estimated by uptake of bromodeoxyuridine. Exp Neurol 186:99–103

    CAS  PubMed  Google Scholar 

  • Esiri MM, Reading MC (1989) Macrophages, lymphocytes and major histocompatibility complex (HLA) class II antigens in adult human sensory and sympathetic ganglia. J Neuroimmunol 23:187–193

    CAS  PubMed  Google Scholar 

  • Farquhar MG, Hartmann JF (1957) Neuroglial structure and relationships as revealed by electron microscopy. J Neuropathol Exp Neurol 16:18–39

    CAS  PubMed  Google Scholar 

  • Feldman-Goriachnik R, Hanani M (2011) Functional study of endothelin B receptors in satellite glial cells in trigeminal ganglia. Neuroreport 22:465–469

    CAS  PubMed  Google Scholar 

  • Feltz P, Rasminsky M (1974) A model for the mode of action of GABA on primary afferent terminals: depolarizing effects of GABA applied iontophoretically to neurones of mammalian dorsal root ganglia. Neuropharmacology 13:553–563

    CAS  PubMed  Google Scholar 

  • Fenzi F, Benedetti MD, Moretto G, Rizzuto N (2001) Glial cell and macrophage reactions in rat spinal ganglion after peripheral nerve lesions: an immunocytochemical and morphometric study. Arch Ital Biol 139:357–365

    CAS  PubMed  Google Scholar 

  • Fieandt H (1910) Eine neue Methode zur Darstellung des Gliagewebes, nebst Beiträgen zur Kenntnis des Baues und der Anordnung der Neuroglia des Hundehirns. Arch Mikr Anat 76:125–209

    Article  Google Scholar 

  • Field HJ, Hill TJ (1974) The pathogenesis of pseudorabies in mice following peripheral inoculation. J Gen Virol 23:145–157

    CAS  PubMed  Google Scholar 

  • Fildes Brosnan C, Bunge MB, Murray MR (1970) The response of lysosomes in cultured neurons to chlorpromazine. J Neuropathol Exp Neurol 29:337–353

    Google Scholar 

  • Fleischhauer K (1958) Über die Feinstruktur der Faserglia. Z Zellforsch 47:548–556

    CAS  PubMed  Google Scholar 

  • Flemming W (1895) Über den Bau der Spinalganglienzellen bei Säugethieren, und Bemerkungen über den der centralen Zellen. Arch Mikr Anat 46:379–394

    Google Scholar 

  • Forssmann WG (1964) Studien über den Feinbau des Ganglion cervicale superius der Ratte. Acta Anat 59:106–140

    CAS  PubMed  Google Scholar 

  • Forssmann WG, Tinguely H, Posternak JM, Rouiller C (1966) L’ultrastructure du ganglion cervical supérieur du rat. Les effets des rayons X. Z Zellforsch 72:325–343

    CAS  PubMed  Google Scholar 

  • Fraentzel O (1867) Beitrag zur Kenntniss von der Structur der spinalen und sympathischen Ganglienzellen. Virchows Arch 38:549–558

    Google Scholar 

  • Freeman SE, Patil VV, Durham PL (2008) Nitric oxide-proton stimulation of trigeminal ganglion neurons increases mitogen-activated protein kinase and phosphatase expression in neurons and satellite glial cells. Neuroscience 157:542–555

    CAS  PubMed  Google Scholar 

  • Friede RL, Johnstone MA (1967) Responses of thymidine labeling of nuclei in gray matter and nerve following sciatic transection. Acta Neuropathol 7:218–231

    CAS  PubMed  Google Scholar 

  • Gabella G, Trigg P, McPhail H (1988) Quantitative cytology of ganglion neurons and satellite glial cells in the superior cervical ganglion of the sheep. Relationship with ganglion neuron size. J Neurocytol 17:753–769

    CAS  PubMed  Google Scholar 

  • Gaik GC, Farbman AI (1973) The chicken trigeminal ganglion. II. Fine structure of the neurons during development. J Morphol 141:57–75

    CAS  PubMed  Google Scholar 

  • Gallego R, Eyzaguirre C (1978) Membrane and action potential characteristics of A and C nodose ganglion cells studied in whole ganglia and in tissue slices. J Neurophysiol 41:1217–1232

    CAS  PubMed  Google Scholar 

  • Gehrmann J, Monaco S, Kreutzberg GW (1991) Spinal cord microglial cells and DRG satellite cells rapidly respond to transection of the rat sciatic nerve. Restor Neurol Neurosci 2:181–198

    CAS  PubMed  Google Scholar 

  • Gill JS, Windebank AJ (1998) Paracrine production of nerve growth factor during rat dorsal root ganglion development. Neurosci Lett 251:149–152

    CAS  PubMed  Google Scholar 

  • Glees P, Gopinath G (1973) Age changes in the centrally and peripherally located sensory neurons in rat. Z Zellforsch 141:285–298

    CAS  PubMed  Google Scholar 

  • Glover RA (1982) Chronological changes in acid phosphatase activity within neurons and perineuronal satellite cells of the inferior vagal ganglion of the cat induced by vagotomy. J Anat 134:215–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves NP, Costelha S, Saraiva MJ (2014) Glial cells in familial amyloidotic polyneuropathy. Acta Neuropathol Commun 2:177

    PubMed  PubMed Central  Google Scholar 

  • Gotow T, Yoshikawa H, Hashimoto PH (1985) Distribution patterns of orthogonal arrays and alkaline phosphatase in plasma membranes of satellite cells in rat spinal ganglia. Anat Embryol 171:171–179

    CAS  Google Scholar 

  • Graus F, Campo E, Cruz-Sanchez F, Ribalta T, Palacin A (1990) Expression of lymphocyte, macrophage and class I and II major histocompatibility complex antigens in normal human dorsal root ganglia. J Neurol Sci 98:203–211

    CAS  PubMed  Google Scholar 

  • Gray EG (1959) Electron microscopy of neuroglial fibrils of the cerebral cortex. J Biophys Biochem Cytol 6:121–122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray EG (1960) Regular organisation of material in certain mitochondria of neuroglia of lizard brain. J Biophys Biochem Cytol 8:282–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grillo MA, Palay SL (1963) Ciliated Schwann cells in the autonomic nervous system of the adult rat. J Cell Biol 16:430–436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grode ML, Murray MR (1973) Effects of methadone-HCl on dorsal root ganglia in organotypic culture. Exp Neurol 40:68–81

    CAS  PubMed  Google Scholar 

  • Groneberg DA, Döring F, Nickolaus M, Daniel H, Fischer A (2001) Expression of PEPT2 peptide transporter mRNA and protein in glial cells of rat dorsal root ganglia. Neurosci Lett 304:181–184

    CAS  PubMed  Google Scholar 

  • Grothe C, Meisinger C, Hertenstein A, Kurz H, Wewetzer K (1997) Expression of fibroblast growth factor-2 and fibroblast growth factor receptor 1 messenger RNAs in spinal ganglia and sciatic nerve: regulation after peripheral nerve lesion. Neuroscience 76:123–135

    CAS  PubMed  Google Scholar 

  • Gu Y, Chen Y, Zhang X, Li G-W, Wang C, Huang L-YM (2010) Neuronal soma-satellite glial cell interactions in sensory ganglia and the participation of purinergic receptors. Neuron Glia Biol 6:53–62

    PubMed  PubMed Central  Google Scholar 

  • Hagedorn L, Paratore C, Brugnoli G, Baert J-L, Mercader N, Suter U, Sommer L (2000) The Ets domain transcription factor Erm distinguishes rat satellite glia from Schwann cells and is regulated in satellite cells by neuregulin signaling. Dev Biol 219:44–58

    CAS  PubMed  Google Scholar 

  • Hamburger V (1961) Experimental analysis of the dual origin of the trigeminal ganglion in the chick embryo. J Exp Zool 148:91–123

    CAS  PubMed  Google Scholar 

  • Hammarberg H, Piehl F, Cullheim S, Fjell J, Hökfelt T, Fried K (1996) GDNF mRNA in Schwann cells and DRG satellite cells after chronic sciatic nerve injury. Neuroreport 7:857–860

    CAS  PubMed  Google Scholar 

  • Hanani M, Huang TY, Cherkas PS, Ledda M, Pannese E (2002) Glial cell plasticity in sensory ganglia induced by nerve damage. Neuroscience 114:279–283

    CAS  PubMed  Google Scholar 

  • Hanker JS, Romanovicz DK, Moore GH (1974) Peroxisomes in satellite, Schwann and laminar cells associated with trigeminal sensory neurons. J Cell Biol 63:131a

    Google Scholar 

  • Hannover A (1840) Die Chromsäure, ein vorzügliches Mittel bei mikroskopischen Untersuchungen. Arch Anat Physiol Wiss Med 549–558

    Google Scholar 

  • Hannover A (1844) Recherches microscopiques sur le système nerveux. Philipsen, Brockhaus, Avenarius, Copenhagen

    Google Scholar 

  • Harrison RG (1904) Neue Versuche und Beobachtungen über die Entwicklung der peripheren Nerven der Wirbeltiere. Sitzungsbericht der niederrheinischen Gesellschaft für Natur und Heilkunde, Bonn, S 55–62

    Google Scholar 

  • Harvarik R (1977) Histochemische Untersuchungen über Veränderungen der Aktivität von Dehydrogenasen und Carboxylsäureesterasen in Spinalganglienzellen und Mantelzellen der Ratte nach Durchschneidung des Nervus ischiadicus. Dissertation, Frankfurt/M

    Google Scholar 

  • Hauw J-J, Boutry J-M, Hamam S, Escourolle R (1978) Lipidose médicamenteuse induite en culture de ganglion spinal de souris par le maléate de perhexiline. Résultats préliminaires concernant la toxicité aiguë du medicament. C R Acad Sci (D) 287:959–961

    CAS  Google Scholar 

  • Held H (1909) Ueber die Neuroglia marginalis der menschlichen Grosshirnrinde. Monats Psych Neurol 26(Ergänzungsheft):360–416

    Google Scholar 

  • Hendelman W (1969) The effect of thallium on peripheral nervous tissue in culture: a light and electron microscopic study. Anat Rec 163:198–199

    Google Scholar 

  • Herman SP, Klein R, Talley FA, Krigman MR (1973) An ultrastructural study of methylmercury-induced primary sensory neuropathy in the rat. Lab Invest 28:104–118

    CAS  PubMed  Google Scholar 

  • Herzog E (1954) Über die periphere Glia in den sympathischen Ganglien. Z Zellforsch 40:199–206

    CAS  PubMed  Google Scholar 

  • Hess A (1955) The fine structure of young and old spinal ganglia. Anat Rec 123:399–424

    CAS  PubMed  Google Scholar 

  • Hibino H, Horio Y, Fujita A, Inanobe A, Doi K, Gotow T, Uchiyama Y, Kubo T, Kurachi Y (1999) Expression of an inwardly rectifying K+ channel, Kir4.1, in satellite cells of rat cochlear ganglia. Am J Physiol 277:C638–C644

    CAS  PubMed  Google Scholar 

  • Hill TJ, Field HJ (1973) The interaction of herpes simplex virus with cultures of peripheral nervous tissue: an electron microscopic study. J Gen Virol 21:123–133

    CAS  PubMed  Google Scholar 

  • Hinds JW, Ruffett TL (1971) Cell proliferation in the neural tube: an electron microscopic and Golgi analysis in the mouse cerebral vesicle. Z Zellforsch 115:226–264

    CAS  PubMed  Google Scholar 

  • Holmgren E (1901) Beiträge zur Morphologie der Zelle. I. Nervenzellen. Anat Hefte 18:267–325

    Google Scholar 

  • Holmgren E (1902) Einige Worte über das “Trophospongium” verschiedener Zellarten. Anat Anz 20:433–440

    Google Scholar 

  • Holton B, Weston JA (1982) Analysis of glial cell differentiation in peripheral nervous tissue. I. S100 accumulation in quail embryo spinal ganglion cultures. Dev Biol 89:64–71

    CAS  PubMed  Google Scholar 

  • Holtzman E, Peterson ER (1969) Uptake of protein by mammalian neurons. J Cell Biol 40:863–869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hösli E, Hösli L (1978) Autoradiographic localization of the uptake of [3H]-GABA and [3H]L-glutamic acid in neurones and glial cells of cultured dorsal root ganglia. Neurosci Lett 7:173–176

    PubMed  Google Scholar 

  • Hösli L, Andrès PF, Hösli E (1977) Action of GABA on neurones and satellite glial cells of cultured rat dorsal root ganglia. Neurosci Lett 6:79–83

    PubMed  Google Scholar 

  • Hösli L, Andrès PF, Hösli E (1978) Neuron-glia interactions: indirect effect of GABA on cultured glial cells. Exp Brain Res 33:425–434

    PubMed  Google Scholar 

  • Hösli L, Andrès PF, Hösli E (1979) Action of amino acid transmitters on cultured glial cells of the mammalian peripheral and central nervous system. J Physiol (Paris) 75:655–659

    Google Scholar 

  • Hossack J, Wyburn GM (1954) Electron microscopic studies of spinal ganglion cells. Proc R Soc Edinb B 65:239–250

    Google Scholar 

  • Huang T-Y, Cherkas PS, Rosenthal DW, Hanani M (2005) Dye coupling among satellite glial cells in mammalian dorsal root ganglia. Brain Res 1036:42–49

    CAS  PubMed  Google Scholar 

  • Huang T-Y, Hanani M, Ledda M, De Palo S, Pannese E (2006) Aging is associated with an increase in dye coupling and in gap junction number in satellite glial cells of murine dorsal root ganglia. Neuroscience 137:1185–1192

    CAS  PubMed  Google Scholar 

  • Huang T-Y, Belzer V, Hanani H (2010) Gap junctions in dorsal root ganglia: possible contribution to visceral pain. Eur J Pain 14:49.e1–49.e11

    Google Scholar 

  • Huang L-YM, Gu Y, Chen Y (2013) Communication between neuronal somata and satellite glial cells in sensory ganglia. Glia 61:1571–1581

    PubMed  PubMed Central  Google Scholar 

  • Huerta JJ, Diaz-Trelles R, Naves FJ, Llamosas MM, Del Valle ME, Vega JA (1996) Epidermal growth factor receptor in adult human dorsal root ganglia. Anat Embryol 194:253–257

    CAS  Google Scholar 

  • Humbertson A Jr, Zimmermann E, Leedy M (1969) A chronological study of mitotic activity in satellite cell hyperplasia associated with chromatolytic neurons. Z Zellforsch 100:507–515

    PubMed  Google Scholar 

  • Jacob C (2015) Transcriptional control of neural crest specification into peripheral glia. Glia 63:1883–1896

    PubMed  Google Scholar 

  • Jacobs JM, Carmichael N, Cavanagh JB (1975) Ultrastructural changes in the dorsal root and trigeminal ganglia of rats poisoned with methyl mercury. Neuropathol Appl Neurobiol 1:1–19

    CAS  Google Scholar 

  • Jacobs JM, MacFarlane RM, Cavanagh JB (1976) Vascular leakage in the dorsal root ganglia of the rat, studied with horseradish peroxidase. J Neurol Sci 29:95–107

    CAS  PubMed  Google Scholar 

  • Jancsó G, Kiraly E, Jancsó-Gábor A (1977) Pharmacologically-induced selective degeneration of chemosensitive primary sensory neurones. Nature 270:741–743

    PubMed  Google Scholar 

  • Janota I (1972) Ultrastructural studies of a hereditary sensory neuropathy in mice (dystonia musculorum). Brain 95:529–536

    CAS  PubMed  Google Scholar 

  • Jasmin L, Vit J-P, Bhargava A, Ohara PT (2010) Can satellite glial cells be therapeutic targets for pain control? Neuron Glia Biol 6:63–71

    PubMed  PubMed Central  Google Scholar 

  • Jessen KR, Thorpe R, Mirsky R (1984) Molecular identity, distribution and heterogeneity of glial fibrillary acidic protein: an immunoblotting and immunohistochemical study of Schwann cells, satellite cells, enteric glia and astrocytes. J Neurocytol 13:187–200

    CAS  PubMed  Google Scholar 

  • Jimenez-Andrade JM, Peters CM, Mejia NA, Ghilardi JR, Kuskowski MA, Mantyh PW (2006) Sensory neurons and their supporting cells located in the trigeminal, thoracic and lumbar ganglia differentially express markers of injury following intravenous administration of paclitaxel in the rat. Neurosci Lett 405:62–67

    CAS  PubMed  Google Scholar 

  • Jones DS (1939) Studies on the origin of sheath cells and sympathetic ganglia in the chick. Anat Rec 73:343–357

    Google Scholar 

  • Joó F, Szolcsányi J, Jancsó-Gábor A (1969) Mitochondrial alterations in the spinal ganglion cells of the rat accompanying the long-lasting sensory disturbance induced by capsaicin. Life Sci 8:621–626

    PubMed  Google Scholar 

  • Journey LJ, Burdman J, George P (1968) Ultrastructural studies on tissue culture cells treated with vincristine (NSC-67574). Cancer Chemother Rep 52:509–517

    CAS  PubMed  Google Scholar 

  • Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210

    CAS  PubMed  Google Scholar 

  • Kar S, Chabot J-G, Quirion R (1991) Quantitative autoradiographic localisation of [125I]endothelin-1 binding sites in spinal cord and dorsal root ganglia of the rat. Neurosci Lett 133:117–120

    CAS  PubMed  Google Scholar 

  • Kawamata T, Ninomiya T, Toriyabe M, Yamamoto J, Niiyama Y, Omote K, Namiki A (2006) Immunohistochemical analysis of acid-sensing ion channel 2 expression in rat dorsal root ganglion and effects of axotomy. Neuroscience 143:175–187

    CAS  PubMed  Google Scholar 

  • Key A, Retzius G (1873) Studien in der Anatomie des Nervensystems. Arch Mikr Anat 9:308–386

    Google Scholar 

  • Kiya T, Kawamata T, Namiki A, Yamakage M (2011) Role of satellite cell-derived L-serine in the dorsal root ganglion in paclitaxel-induced painful peripheral neuropathy. Neuroscience 174:190–199

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Fukuoka T, Yamanaka H, Dai Y, Obata K, Tokunaga A, Noguchi K (2006) Neurons and glial cells differentially express P2Y receptor mRNAs in the rat dorsal root ganglion and spinal cord. J Comp Neurol 498:443–454

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Yamauchi K, Matsuura Y, Kuniyoshi K, Takahashi K, Ohtori S (2015) The effects of generally administered anti-NGF receptor (p75NTR) antibody on pain-related behavior, dorsal root ganglia, and spinal glia activation in a rat model of brachial plexus avulsion. J Hand Surg Am 40:2017–2025

    PubMed  Google Scholar 

  • Koelliker A (1905) Die Entwicklung der Elemente des Nervensystems. Z Wissen Zool 82:1–38

    Google Scholar 

  • Koeppen AH, Morral JA, Davis AN, Qian J, Petrocine SV, Knutson MD, Gibson WM, Cusack MJ, Li D (2009) The dorsal root ganglion in Friedreich’s ataxia. Acta Neuropathol 118:763–776

    PubMed  Google Scholar 

  • Kohn A (1907) Über die Scheidenzellen (Randzellen) peripherer Ganglienzellen. Anat Anz 30:154–159

    Google Scholar 

  • Kohno K (1969) Ultrastructure of long gliosome in satellite cell of frog spinal ganglion. Bull Tokyo Med Dent Univ 16:303–309

    Google Scholar 

  • Koike T, Wakabayashi T, Mori T, Takamori Y, Hirahara Y, Yamada H (2014) Sox2 in the adult rat sensory nervous system. Histochem Cell Biol 141:301–309

    CAS  PubMed  Google Scholar 

  • Koneff H (1887) Beiträge zur Kenntnis in den Nervenzellen der peripheren Ganglien. Mitt Naturforsch Ges Bern, Nr 1143–1168, S 13–44

    Google Scholar 

  • Krajčí D (1973) Ontogenetic development of the relation between neurons and satellite cells in spinal ganglia. Folia Morphol (Warsz) 21:139–141

    Google Scholar 

  • Krajčí D (1975) Unusual intracapsular and interstitial cells in spinal ganglia of cat and their interrelationships. Acta Univ Palacki Olomuc Fac Med 73:165–176

    Google Scholar 

  • Kraus-Ruppert R, Laissue J, Bürki H, Odartchenko N (1975) Kinetic studies on glial, Schwann and capsular cells labelled with [3H]thymidine in cerebrospinal tissue of young mice. J Neurol Sci 26:555–563

    CAS  PubMed  Google Scholar 

  • Krawczyk WS, Wilgram GF (1973) Hemidesmosome and desmosome morphogenesis during epidermal wound healing. J Ultrastruct Res 45:93–101

    CAS  PubMed  Google Scholar 

  • Kubota K, Hioki K (1943) Zytologische Untersuchungen der Mantelzellen im menschlichen Spinalganglion. Okajimas Folia Anat Jpn 22:111–126

    Google Scholar 

  • Kummer W, Behrends S, Schwarzlmüller T, Fischer A, Koesling D (1996) Subunits of soluble guanylyl cyclase in rat and guinea-pig sensory ganglia. Brain Res 721:191–195

    CAS  PubMed  Google Scholar 

  • Kung L-H, Gong K, Adedoyin M, Ng J, Bhargava A, Ohara PT, Jasmin L (2013) Evidence for glutamate as a neuroglial transmitter within sensory ganglia. PLoS One 8:e68312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuntz A, Sulkin NM (1947) The neuroglia in the autonomic ganglia: cytologic structure and reactions to stimulation. J Comp Neurol 86:467–477

    CAS  PubMed  Google Scholar 

  • Kuo L-T, Simpson A, Schänzer A, Tse J, An S-F, Scaravilli F, Groves MJ (2005) Effects of systemically administered NT-3 on sensory neuron loss and nestin expression following axotomy. J Comp Neurol 482:320–332

    CAS  PubMed  Google Scholar 

  • Lahl R (1975) Die Pathomorphologie des ZNS bei der Tetrachlorkohlenstoffintoxication. Zentralbl Allg Pathol 119:276–285

    CAS  PubMed  Google Scholar 

  • LaVail JH, Topp KS, Giblin PA, Garner JA (1997) Factors that contribute to the transneuronal spread of herpes simplex virus. J Neurosci Res 49:485–496

    CAS  PubMed  Google Scholar 

  • Ledda M, Barni L, Altieri L, Pannese E (1999) Amount and distribution of lipofuscin in nerve and satellite cells from spinal ganglia of young adult and aged rabbits. J Submicrosc Cytol Pathol 31:237–246

    CAS  PubMed  Google Scholar 

  • Ledda M, Barni L, Altieri L, Pannese E (2003) The Golgi apparatus of satellite cells associated with spinal ganglion neurons: changes with age in the rabbit. J Submicrosc Cytol Pathol 35:267–270

    CAS  PubMed  Google Scholar 

  • Leech RW (1967) Changes in satellite cells of rat dorsal root ganglia during central chromatolysis. An electron microscopic study. Neurology 17:349–358

    CAS  PubMed  Google Scholar 

  • Lenghaus C, Mann JA, Done JT, Bradley R (1976) Neuropathology of experimental swine vesicular disease in pigs. Res Vet Sci 21:19–27

    CAS  PubMed  Google Scholar 

  • Lenhossék M (1897) Über den Bau der Spinalganglienzellen des Menschen. Arch Psychiatr Nervenkr 29:345–380

    Article  Google Scholar 

  • Lenhossék M von (1907) Zur Kenntniss der Spinalganglienzellen. Arch Mikr Anat 69:245–263

    Google Scholar 

  • Levi G (1907) La capsula delle cellule dei gangli sensitivi. Penetrazione di fibre collagene nel loro protoplasma. Monit Zool Ital 18:153–158

    Google Scholar 

  • Levi G (1908) I gangli cerebrospinali. Arch Ital Anat Embriol 7(Suppl):1–392

    Google Scholar 

  • Levin MJ, Cai G-Y, Manchak MD, Pizer LI (2003) Varicella-zoster virus DNA in cells isolated from human trigeminal ganglia. J Virol 77:6979–6987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levy BDFA, Cunha JDC, Chadi G (2007) Cellular analysis of S100β and fibroblast growth factor-2 in the dorsal root ganglia and sciatic nerve of rodents. Focus on paracrine actions of activated satellite cells after axotomy. Int J Neurosci 117:1481–1503

    CAS  Google Scholar 

  • Leydig F (1851) Zur Anatomie und Histologie der Chimaera monstrosa. Arch Anat Physiol Wiss Med 241–271

    Google Scholar 

  • Li M, Shi J, Tang J-r, Chen D, Ai B, Chen J, Wang L-n, Cao F-y, Li L-l, Lin C-y, Guan X-m (2005) Effects of complete Freund’s adjuvant on immunohistochemical distribution of IL-1β and IL-1R I in neurons and glia cells of dorsal root ganglion. Acta Pharmacol Sin 26:192–198

    CAS  PubMed  Google Scholar 

  • Li J, Vause CV, Durham PL (2008) Calcitonin gene-related peptide stimulation of nitric oxide synthesis and release from trigeminal ganglion glial cells. Brain Res 1196:22–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman AR (1971) The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol 14:49–124

    CAS  PubMed  Google Scholar 

  • Lieberman AR (1976) Sensory ganglia. In: Landon DN (ed) The peripheral nerve. Chapman and Hall, London, pp 188–278

    Google Scholar 

  • Lindner G, Grosse G (1974) Morphometrische Untersuchungen am Ganglion trigeminale vom Hühnerembryo in situ and in der In-vitro-Kultur. Z Mikr Anat Forsch 88:439–448

    CAS  PubMed  Google Scholar 

  • Liu W, Glueckert R, Linthicum FH, Rieger G, Blumer M, Bitsche M, Pechriggl E, Rask-Andersen H, Schrott-Fischer A (2014) Possible role of gap junction intercellular channels and connexin 43 in satellite glial cells (SGCs) for preservation of human spiral ganglion neurons. Cell Tissue Res 355:267–278

    CAS  PubMed  Google Scholar 

  • Lodin Z, Booher J, Kasten FH (1970) Phase-contrast cinematographic study of dissociated neurons from embryonic chick dorsal root ganglia cultured in the Rose chamber. Exp Cell Res 60:27–39

    CAS  PubMed  Google Scholar 

  • Lodin Z, Faltin J, Booher J, Hartman J, Sensenbrenner M (1973) Formation of intercellular contacts in cultures of dissociated neurons from embryonic chicken dorsal root ganglia. An electron microscopic and scanning electron microscopic study. Neurobiology 3:376–390

    Google Scholar 

  • Low FN (1970) Interstitial bodies in the early chick embryo. Am J Anat 128:45–56

    CAS  PubMed  Google Scholar 

  • Lu X, Richardson PM (1991) Inflammation near the nerve cell body enhances axonal regeneration. J Neurosci 11:972–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magnusson S, Ekström J, Elmér E, Kanje M, Ny L, Alm P (2000) Heme oxigenase-1, heme oxigenase-2 and biliverdin reductase in peripheral ganglia from rat, expression and plasticity. Neuroscience 95:821–829

    Google Scholar 

  • Mannu A (1935) Ricerche sulla evoluzione dei neuroni nei gangli spinali dei mammiferi (Bos taurus). Riv Biol 19:225–250

    Google Scholar 

  • Martinelli C, Sartori P, De Palo S, Ledda M, Pannese E (2005) Increase in number of the gap junctions between satellite neuroglial cells during lifetime: an ultrastructural study in rabbit spinal ganglia from youth to extremely advanced age. Brain Res Bull 67:19–23

    CAS  PubMed  Google Scholar 

  • Martinelli C, Sartori P, De Palo S, Ledda M, Pannese E (2006a) The perineuronal glial tissue of spinal ganglia. Quantitative changes in the rabbit from youth to extremely advanced age. Anat Embryol 211:455–463

    CAS  Google Scholar 

  • Martinelli C, Sartori P, Ledda M, Pannese E (2006b) A study of mitochondria in spinal ganglion neurons during life: quantitative changes from youth to extremely advanced age. Tissue Cell 38:93–98

    CAS  PubMed  Google Scholar 

  • Martinelli C, Sartori P, Ledda M, Pannese E (2007) Mitochondria in perineuronal satellite cell sheaths of rabbit spinal ganglia: quantitative changes during life. Cells Tissues Organs 186:141–146

    PubMed  Google Scholar 

  • Masaki T, Matsumura K, Hirata A, Yamada H, Hase A, Shimizu T, Yorifuji H, Motoyoshi K, Kamakura K (2001) Expression of dystroglycan complex in satellite cells of dorsal root ganglia. Acta Neuropathol 101:174–178

    CAS  PubMed  Google Scholar 

  • Masurovsky EB, Bunge MB, Bunge RP (1967) Cytological studies of organotypic cultures of rat dorsal root ganglia following X-irradiation in vitro. I. Changes in neurons and satellite cells. J Cell Biol 32:467–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masurovsky EB, Peterson ER, Crain SM, Horwitz SB (1983) Morphological alterations in dorsal root ganglion neurons and supporting cells of organotypic mouse spinal cord-ganglion cultures exposed to taxol. Neuroscience 10:491–509

    CAS  PubMed  Google Scholar 

  • Matsuda S, Kobayashi N, Terashita T, Shimokawa T, Shigemoto K, Mominoki K, Wakisaka H, Saito S, Miyawaki K, Saito K, Kushihata F, Chen J, Gao S-Y, Li C-Y, Wang M, Fujiwara T (2005) Phylogenetic investigation of Dogiel’s pericellular nests and Cajal’s initial glomeruli in the dorsal root ganglion. J Comp Neurol 491:234–245

    PubMed  Google Scholar 

  • Matsumoto E, Rosenbluth J (1986) Structure of the satellite cell sheath around the cell body, axon hillock, and initial segment of frog dorsal root ganglion cells. Anat Rec 215:182–191

    CAS  PubMed  Google Scholar 

  • Matthews MR, Raisman G (1972) A light and electron microscopic study of the cellular response to axonal injury in the superior cervical ganglion of the rat. Proc R Soc Lond B Biol Sci 181:43–79

    CAS  PubMed  Google Scholar 

  • McCracken RM, Dow C (1973a) An electron microscopic study of normal bovine spinal ganglia and nerves. Acta Neuropathol 25:127–137

    CAS  PubMed  Google Scholar 

  • McCracken RM, Dow C (1973b) An electron microscopic study of Aujeszky’s disease. Acta Neuropathol 25:207–219

    CAS  PubMed  Google Scholar 

  • McLachlan EM, Jänig W, Devor M, Michaelis M (1993) Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature 363:543–546

    CAS  PubMed  Google Scholar 

  • Meier C, Glees P (1971) Der Einfluss des Centrophenoxins auf das Alterspigment in Satellitenzellen und Neuronen der Spinalganglien seniler Ratten. Eine elektronenmikroskopische Untersuchung. Acta Neuropathol 17:310–320

    CAS  PubMed  Google Scholar 

  • Meller K, Waelsch M (1975) Changes in glia-neuron relationships in cell cultures of spinal ganglia caused by puromycin. Cell Tissue Res 160:431–442

    CAS  PubMed  Google Scholar 

  • Miller R, Varon S, Kruger L, Coates PW, Orkand PM (1970) Formation of synaptic contacts on dissociated chick embryo sensory ganglion cells in vitro. Brain Res 24:356–358

    CAS  PubMed  Google Scholar 

  • Miller KE, Richards BA, Kriebel RM (2002) Glutamine-, glutamine synthetase-, glutamate dehydrogenase- and pyruvate carboxylase-immunoreactivities in the rat dorsal root ganglion and peripheral nerve. Brain Res 945:202–211

    CAS  PubMed  Google Scholar 

  • Mirsky R, Jessen JR, Schachner M, Goridis C (1986) Distribution of the adhesion molecules N-CAM and L1 on peripheral neurons and glia in adult rats. J Neurocytol 15:799–815

    CAS  PubMed  Google Scholar 

  • Morris R, Southam E, Braid DJ, Garthwaite J (1992) Nitric oxide may act as a messenger between dorsal root ganglion neurones and their satellite cells. Neurosci Lett 137:29–32

    CAS  PubMed  Google Scholar 

  • Moses HL, Beaver DL, Ganote CE (1965) Electron microscopy of the trigeminal ganglion. I. Comparative ultrastructure. Arch Pathol 79:541–556

    CAS  PubMed  Google Scholar 

  • Mudge AW (1981) Effect of non-neuronal cells on peptide content of cultured sensory neurones. J Exp Biol 95:195–203

    CAS  PubMed  Google Scholar 

  • Mudge AW (1984) Schwann cells induce morphological transformation of sensory neurones in vitro. Nature 309:367–369

    CAS  PubMed  Google Scholar 

  • Muratori L, Ronchi G, Raimondo S, Geuna S, Giacobini-Robecchi MG, Fornaro M (2015) Generation of new neurons in dorsal root ganglia in adult rats after peripheral nerve crush injury. Neural Plast 2015:860546

    PubMed  PubMed Central  Google Scholar 

  • Murray MR, Peterson ER (1964) Actions of drugs and toxic substances on nervous tissue in culture. In: Richter D (ed) Comparative neurochemistry. Pergamon, Oxford, London, New York, Paris, pp 451–458

    Google Scholar 

  • Naciff JM, Kaetzel MA, Behbehani MM, Dedman JR (1996) Differential expression of annexins I-VI in the rat dorsal root ganglia and spinal cord. J Comp Neurol 368:356–370

    CAS  PubMed  Google Scholar 

  • Nageotte J (1907a) Neurophagie dans les greffes de ganglions rachidiens. Rev Neurol 15:933–944

    Google Scholar 

  • Nageotte J (1907b) Troisième note sur la greffe des ganglions rachidiens; mode de destruction des cellules nerveuses mortes. C R Soc Biol (Paris) 62:381–384

    Google Scholar 

  • Nakamura Y, Iga K, Shibata T, Shudo M, Kataoka K (1993) Glial plasmalemmal vesicles: a subcellular fraction from rat hippocampal homogenate distinct from synaptosomes. Glia 9:48–56

    CAS  PubMed  Google Scholar 

  • Narayanan CH, Narayanan Y (1980) Neural crest and placodal contribution in the development of the glossopharyngeal-vagal complex in the chick. Anat Rec 196:71–82

    CAS  PubMed  Google Scholar 

  • Nathaniel EJH, Nathaniel DR (1973) Electron microscopic studies of spinal ganglion cells following crushing of dorsal roots in adult rat. J Ultrastruct Res 45:168–182

    CAS  PubMed  Google Scholar 

  • Nawzatzky I (1933) Zur Kenntnis der Farbspeicherung in peripherischen Ganglien der Maus. Z Zellforsch 20:229–236

    Google Scholar 

  • Nemiloff A (1908) Beobachtungen über die Nervenelemente bei Ganoïden und Knochenfischen. I. Der Bau der Nervenzellen. Arch Mikr Anat 72:1–46

    Google Scholar 

  • Newcomb EH, Steer MW, Hepler PK, Wergin WP (1968) An atypical crista resembling a “tight junction” in bean root mitochondria. J Cell Biol 39:35–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novikoff AB, Quintana N, Villaverde H, Forschirm R (1966) Nucleoside phosphatase and cholinesterase activities in dorsal root ganglia and peripheral nerve. J Cell Biol 29:525–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Obersteiner EJ, Sharma RP (1978) Effect of vitamin E on selenium cytotoxicity in chick ganglia cultures. Toxicology 9:165–172

    CAS  PubMed  Google Scholar 

  • Ohara PT, Vit J-P, Bhargava A, Jasmin L (2008) Evidence for a role of connexin43 in trigeminal pain using RNA interference in vivo. J Neurophysiol 100:3064–3073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohara PT, Vit J-P, Bhargava A, Romero M, Sundberg C, Charles AC, Jasmin L (2009) Gliopathic pain: when satellite glial cells go bad. Neuroscientist 15:450–463

    PubMed  PubMed Central  Google Scholar 

  • Ohtori S, Takahashi K, Moriya H, Myers RR (2004) TNF-α and TNF-α receptor type 1 upregulation in glia and neurons after peripheral nerve injury. Studies in murine DRG and spinal cord. Spine 29:1082–1088

    PubMed  Google Scholar 

  • Olsson Y (1971) Studies on vascular permeability in peripheral nerves. IV. Distribution of intravenously injected protein tracers in the peripheral nervous system of various species. Acta Neuropathol 17:114–126

    CAS  PubMed  Google Scholar 

  • Ortiz-Picón JM (1932) La oligodendroglía de los ganglios sensitívos. Rev Españ Biol 1:19–24

    Google Scholar 

  • Ortiz-Picón JM (1949) Nouvelle contribution à l’étude de la névroglie (oligodendroglie) des ganglions sensitifs. Bull Histol Appl 26:113–123

    PubMed  Google Scholar 

  • Ortiz-Picón JM (1955) The neuroglia of the sensory ganglia. Anat Rec 121:513–529

    PubMed  Google Scholar 

  • Palay SL (1957) Contributions of electron microscopy to neuroanatomy. In: Windle WF (ed) New research techniques of neuroanatomy. Thomas, Springfield, pp 5–16

    Google Scholar 

  • Palumbi G (1944) Osservazioni sulle capsule pericellulari e sulle cellule satelliti dei gangli spinali e simpatici. Ricerche Morf 20/21:117–144

    Google Scholar 

  • Pannese E (1960) Observations on the morphology, submicroscopic structure and biological properties of satellite cells (s.c.) in sensory ganglia of mammals. Z Zellforsch 52:567–597

    CAS  PubMed  Google Scholar 

  • Pannese E (1963) Investigations on the ultrastructural changes of the spinal ganglion neurons in the course of axon regeneration and cell hypertrophy. II. Changes during cell hypertrophy and comparison between the ultrastructure of nerve cells of the same type under different functional conditions. Z Zellforsch 61:561–586

    Google Scholar 

  • Pannese E (1964) Number and structure of perisomatic satellite cells of spinal ganglia under normal conditions or during axon regeneration and neuronal hypertrophy. Z Zellforsch 63:568–592

    CAS  PubMed  Google Scholar 

  • Pannese E (1968a) Developmental changes of the endoplasmic reticulum and ribosomes in nerve cells of the spinal ganglia of the domestic fowl. J Comp Neurol 132:331–364

    CAS  PubMed  Google Scholar 

  • Pannese E (1968b) Temporary junctions between neuroblasts in the developing spinal ganglia of the domestic fowl. J Ultrastruct Res 21:233–250

    Google Scholar 

  • Pannese E (1969) Electron microscopical study on the development of the satellite cell sheath in spinal ganglia. J Comp Neurol 135:381–422

    CAS  PubMed  Google Scholar 

  • Pannese E (1974) The histogenesis of the spinal ganglia. Adv Anat Embryol Cell Biol 47(5):1–97

    Google Scholar 

  • Pannese E (1978) The response of the satellite and other non-neuronal cells to the degeneration of neuroblasts in chick embryo spinal ganglia. Cell Tissue Res 190:1–14

    CAS  PubMed  Google Scholar 

  • Pannese E (1981) The satellite cells of the sensory ganglia. Adv Anat Embryol Cell Biol 65:1–111

    CAS  PubMed  Google Scholar 

  • Pannese E (2015) Neurocytology. Fine structure of neurons, nerve processes, and neuroglial cells, 2nd edn. Springer, New York

    Google Scholar 

  • Pannese E, Procacci P (2002) Ultrastructural localization of NGF receptors in satellite cells of the rat spinal ganglia. J Neurocytol 31:755–763

    CAS  PubMed  Google Scholar 

  • Pannese E, Bianchi R, Calligaris B, Ventura R, Weibel ER (1972) Quantitative relationships between nerve and satellite cells in spinal ganglia. An electron microscopical study. I. Mammals. Brain Res 46:215–234

    CAS  PubMed  Google Scholar 

  • Pannese E, Ventura R, Bianchi R (1975) Quantitative relationships between nerve and satellite cells in spinal ganglia: an electron microscopical study. II. Reptiles. J Comp Neurol 160:463–476

    CAS  PubMed  Google Scholar 

  • Pannese E, Luciano L, Iurato S, Reale E (1977) Intercellular junctions and other membrane specializations in developing spinal ganglia: a freeze-fracture study. J Ultrastruct Res 60:169–180

    CAS  PubMed  Google Scholar 

  • Pannese E, Luciano L, Reale E (1978) Intercellular junctions in developing spinal ganglia. Zoon 6:129–138

    Google Scholar 

  • Pannese E, Rigamonti L, Procacci P, Ledda M, Arcidiacono G, Frattola D (1987) An electron microscope study of quantitative relationships between axon and Schwann cell sheath in myelinated fibres of peripheral nerves. Anat Embryol 175:423–430

    CAS  Google Scholar 

  • Pannese E, Arcidiacono G, Frattola D, Rigamonti L, Procacci P, Ledda M (1988) Quantitative relationships between axoplasm and Schwann cell sheath in unmyelinated nerve fibres. An electron microscope study. J Anat 159:49–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pannese E, Ledda M, Arcidiacono G, Rigamonti L (1991) Clusters of nerve cell bodies enclosed within a common connective tissue envelope in the spinal ganglia of the lizard and rat. Cell Tissue Res 264:209–214

    CAS  PubMed  Google Scholar 

  • Pannese E, Procacci P, Ledda M, Conte V (1993) The percentage of nerve cell bodies arranged in clusters decreases with age in the spinal ganglia of adult rabbits. Anat Embryol 187:331–334

    CAS  Google Scholar 

  • Pannese E, Rigamonti L, Ledda M, Arcidiacono G (1994) Perikaryal projections of spinal ganglion neurons: quantitative differences between membrane domains in contact with different microenvironments. J Anat 185:497–502

    PubMed  PubMed Central  Google Scholar 

  • Pannese E, Ledda M, Conte V, Rigamonti L, Procacci P (1995) On the influence of the perineuronal microenvironment on the outgrowth of perikaryal projections of spinal ganglion neurons. J Submicrosc Cytol Pathol 27:303–308

    CAS  PubMed  Google Scholar 

  • Pannese E, Procacci P, Ledda M, Conte V (1996) Age-related reduction of the satellite cell sheath around spinal ganglion neurons in the rabbit. J Neurocytol 25:137–146

    CAS  PubMed  Google Scholar 

  • Pannese E, Ledda M, Martinelli C, Sartori P (1997) Age-related decrease of the perineuronal satellite cell number in the rabbit spinal ganglia. J Peripher Nerv Syst 2:77–82

    CAS  PubMed  Google Scholar 

  • Pannese E, Procacci P, Berti E, Ledda M (1999) The perikaryal surface of spinal ganglion neurons: differences between domains in contact with satellite cells and in contact with the extracellular matrix. Anat Embryol 199:199–206

    CAS  Google Scholar 

  • Pannese E, Ledda M, Cherkas PS, Huang TY, Hanani M (2003) Satellite cell reactions to axon injury of sensory ganglion neurons. Increase in number of gap junctions and formation of bridges connecting previously separate perineuronal sheaths. Anat Embryol 206:337–347

    CAS  Google Scholar 

  • Patterson PH, Chun LLY (1974) The influence of non-neuronal cells on catecholamine and acetylcholine synthesis and accumulation in cultures of dissociated sympathetic neurons. Proc Natl Acad Sci U S A 71:3607–3610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pazour GJ, Witman GB (2003) The vertebrate primary cilium is a sensory organelle. Curr Opin Cell Biol 15:105–110

    CAS  PubMed  Google Scholar 

  • Penfield W (1932) Tumors of the sheaths of the nervous system. In: Penfield W (ed) Cytology and cellular pathology of the nervous system, vol 3. Hoeber, New York, pp 953–990

    Google Scholar 

  • Penta P (1934) Osservazioni sulla capsula nei gangli spinali. Riv Patol Nerv Ment 44:509–513

    Google Scholar 

  • Peters CM, Jimenez-Andrade JM, Jonas BM, Sevcik MA, Koewler NJ, Ghilardi JR, Wong GY, Mantyh PW (2007) Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp Neurol 203:42–54

    CAS  PubMed  Google Scholar 

  • Pick J (1963) The submicroscopic organization of the sympathetic ganglion in the frog (Rana pipiens). J Comp Neurol 120:409–462

    CAS  PubMed  Google Scholar 

  • Pilar G, Landmesser L (1976) Ultrastructural differences during embryonic cell death in normal and peripherally deprived ciliary ganglia. J Cell Biol 68:339–356

    CAS  PubMed  Google Scholar 

  • Pineda A, Maxwell DS, Kruger L (1967) The fine structure of neurons and satellite cells in the trigeminal ganglion of cat and monkey. Am J Anat 121:461–488

    CAS  PubMed  Google Scholar 

  • Pomerat CM, Hendelman WJ, Raiborn CW Jr, Massey JF (1967) Dynamic activities of nervous tissue in vitro. In: Hydén H (ed) The neuron. Elsevier, Amsterdam, pp 119–178

    Google Scholar 

  • Pomeroy SL, Zurakowski D, Khoxayo S, Endara M, Dikkes P (1996) Postnatal addition of satellite cells to parasympathetic neurons. J Comp Neurol 375:518–525

    CAS  PubMed  Google Scholar 

  • Pomonis JD, Rogers SD, Peters CM, Ghilardi JR, Mantyh PW (2001) Expression and localization of endothelin receptors: implications for the involvement of peripheral glia in pain. J Neurosci 21:999–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popken GJ, Farel PB (1997) Sensory neuron number in neonatal and adult rats estimated by means of stereologic and profile-based methods. J Comp Neurol 386:8–15

    CAS  PubMed  Google Scholar 

  • Price TJ, Hargreaves KM, Cervero F (2006) Protein expression and mRNA cellular distribution of the NKCC1 cotransporter in the dorsal root and trigeminal ganglia of the rat. Brain Res 1112:146–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prineas J, Spencer PS (1975) Pathology of the nerve cell body in disorders of the peripheral nervous system. In: Dyck PJ, Thomas PK, Lambert EH (eds) Peripheral neuropathy, vol 1. Saunders, Philadelphia, London, Toronto, pp 253–295

    Google Scholar 

  • Procacci P, Magnaghi V, Pannese E (2008) Perineuronal satellite cells in mouse spinal ganglia express the gap junction protein connexin43 throughout life with decline in old age. Brain Res Bull 75:562–569

    CAS  PubMed  Google Scholar 

  • Pruginin-Bluger M, Shelton DL, Kalcheim C (1997) A paracrine effect for neuron-derived BDNF in development of dorsal root ganglia: stimulation of Schwann cell myelin protein expression by glial cells. Mech Dev 61:99–111

    CAS  PubMed  Google Scholar 

  • Quade RH (1939) A new staining technic originated to demonstrate the capsular cells of the sympathetic nervous system. Proc Mayo Clin 14:555–560

    Google Scholar 

  • Ramό n y Cajal S (1890) Sobre la existencia de terminaciones nerviosas pericelulares en los ganglios nerviosos raquidianos. Pequeñas Comun Anat (Barcelona) pp 1–5

    Google Scholar 

  • Ramόn y Cajal S (1907) Die Struktur der sensiblen Ganglien des Menschen und der Tiere. Ergebn Anat Entwickl Gesch 16:177–215

    Google Scholar 

  • Ramόn y Cajal S (1909) Histologie du système nerveux de l’homme et des vertébrés, vol 1. Maloine, Paris

    Google Scholar 

  • Ramόn y Cajal S, Oloriz F (1897) Los ganglios sensitivos craneales de los mamiferos. Rev Trim Micr 2:129–151

    Google Scholar 

  • Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A 95:11981–11986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid MH, Inoue M, Matsumoto M, Ueda H (2004) Switching of bradykinin-mediated nociception following partial sciatic nerve injury in mice. J Pharmacol Exp Ther 308:1158–1164

    CAS  PubMed  Google Scholar 

  • Reichelt M, Zerboni L, Arvin AM (2008) Mechanisms of varicella-zoster virus neuropathogenesis in human dorsal root ganglia. J Virol 82:3971–3983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Remak R (1838) Observationes anatomicae et microscopicae de systematis nervosi structura. Dissertation, Berolini

    Google Scholar 

  • Retzius G (1894) Zur Frage von den freien Nervenendigungen in den Spinalganglien. Biol Untersuch NF 6:59–61

    Google Scholar 

  • Riegele L (1932) Beitrag zur Kenntnis des Scheidenplasmodiums im autonomen Nervensystem. Z Zellforsch 15:374–397

    Google Scholar 

  • Río Hortega P, Polak M, Prado JM (1942) Investigaciones sobre la neuroglia de los ganglios sensitivos. Arch Histol (Buenos Aires) 1:233–275

    Google Scholar 

  • Rosenbluth J (1962a) The fine structure of neurons and satellite cells in spinal ganglia of the toad. Anat Rec 142:344

    Google Scholar 

  • Rosenbluth J (1962b) The fine structure of acoustic ganglia in the rat. J Cell Biol 12:329–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbluth J (1963) Contrast between osmium-fixed and permanganate-fixed toad spinal ganglia. J Cell Biol 16:143–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbluth J, Palay SL (1961) The fine structure of nerve cell bodies and their myelin sheaths in the eighth nerve ganglion of the goldfish. J Biophys Biochem Cytol 9:853–877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbluth J, Wissig SL (1964) The distribution of exogenous ferritin in toad spinal ganglia and the mechanism of its uptake by neurons. J Cell Biol 23:307–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rozanski GM, Kim H, Li Q, Wong FK, Stanley EF (2012) Slow chemical transmission between dorsal root ganglion neuron somata. Eur J Neurosci 36:3314–3321

    PubMed  Google Scholar 

  • Rozanski GM, Nath AR, Adams ME, Stanley EF (2013) Low voltage-activated calcium channels gate transmitter release at the dorsal root ganglion sandwich synapse. J Physiol 591:5575–5583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma E, Wang HJ, Asai Y, Tamaki D, Amano K, Mabuchi Y, Herbert DC, Soji T (2001) Gap junctional communication between the satellite cells of rat dorsal root ganglia. Acta Anat Nippon 76:297–302

    CAS  PubMed  Google Scholar 

  • Sandelin M, Zabihi S, Liu L, Wicher G, Kozlova EN (2004) Metastasis-associated S100A4 (Mts1) protein is expressed in subpopulations of sensory and autonomic neurons and in Schwann cells of the adult rat. J Comp Neurol 473:233–243

    CAS  PubMed  Google Scholar 

  • Sato M, Austin G (1961) Intracellular potentials of mammalian dorsal root ganglion cells. J Neurophysiol 24:569–582

    CAS  PubMed  Google Scholar 

  • Schaffer J (1896) Über einen neuen Befund von Centrosomen in Ganglien- und Knorpelzellen. Sitzungsber Akad Wiss Wien 105:21–28

    Google Scholar 

  • Scharenberg K (1952) Glia and the elements of Schwann of the human Gasserian ganglion. Trab Inst Cajal Invest Biol 44:75–94

    Google Scholar 

  • Scharf JH (1958) Sensible Ganglien. In: von Möllendorf W, Bargmann W (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen, Bd4/3. Springer, S. 14–15, 290–300

    Google Scholar 

  • Schlaepfer WW (1969) Experimental lead neuropathy: a disease of the supporting cells in the peripheral nervous system. J Neuropathol Exp Neurol 28:401–418

    CAS  PubMed  Google Scholar 

  • Schlaepfer WW (1971) Cadmium-incidence injury in the rat spinal ganglia. J Neuropathol Exp Neurol 30:141–142

    CAS  PubMed  Google Scholar 

  • Schon F, Kelly JS (1974a) Autoradiographic localisation of [3H]GABA and [3H]glutamate over satellite glial cells. Brain Res 66:275–288

    CAS  Google Scholar 

  • Schon F, Kelly JS (1974b) The characterisation of [3H]GABA uptake into the satellite glial cells of rat sensory ganglia. Brain Res 66:289–300

    CAS  Google Scholar 

  • Schramm J (1864) Neue Untersuchungen über den Bau der Spinalganglien. Med Inaug-Diss, Würzburg

    Google Scholar 

  • Schröder JM (1970) Zur Pathogenese der Isoniazid-Neuropathie. II Phasenkontrast-und elektronenmikroskopische Untersuchungen am Rückenmark, an Spinalganglien und Muskelspindeln. Acta Neuropathol 16:324–341

    Article  PubMed  Google Scholar 

  • Schultze M (1871) Allgemeines über die Structurelemente des Nervensystems. In: Stricker S (Hrsg) Handbuch der Lehre von den Geweben des Menschen und der Thiere, Bd 1. Engelmann, Leipzig, S 108–136

    Google Scholar 

  • Schwandt H-D (1976) Enzymhistochemische Untersuchungen über Veränderungen sauer Phosphatasen, der alkalischen Phosphatase, Adenosintriphosphatase und unspezifischen Esterase in Spinalganglienzellen und Mantelzellen der Ratte nach Durchschneidung des N. ischiadicus. Inaug-Diss, Frankfurt

    Google Scholar 

  • Sharma K, Korade Z, Frank E (1995) Late-migrating neuroepithelial cells from the spinal cord differentiate into sensory ganglion cells and melanocytes. Neuron 14:143–152

    CAS  PubMed  Google Scholar 

  • Shimeld C, Whiteland JL, Williams NA, Easty DL, Hill TJ (1997) Cytokine production in the nervous system of mice during acute and latent infection with herpes simplex virus type 1. J Gen Virol 78:3317–3325

    CAS  PubMed  Google Scholar 

  • Shimizu Y (1965) The satellite cells in cultures of dissociated spinal ganglia. Z Zellforsch 67:185–195

    CAS  PubMed  Google Scholar 

  • Shinder V, Devor M (1994) Structural basis of neuron-to-neuron cross-excitation in dorsal root ganglia. J Neurocytol 23:515–531

    CAS  PubMed  Google Scholar 

  • Shinder V, Govrin-Lippmann R, Cohen S, Belenky M, Ilin P, Fried K, Wilkinson H, Devor M (1999) Structural basis of sympathetic-sensory coupling in rat and human dorsal root ganglia following peripheral nerve injury. J Neurocytol 28:743–761

    CAS  PubMed  Google Scholar 

  • Shoji Y, Yamaguchi-Yamada M, Yamamoto Y (2010) Glutamate- and GABA-mediated neuron-satellite cell interaction in nodose ganglia as revealed by intracellular calcium imaging. Histochem Cell Biol 134:13–22

    CAS  PubMed  Google Scholar 

  • Sjögreen B, Wiklund P, Ekström PAR (2000) Mitogen activated protein kinase inhibition by PD98059 blocks nerve growth factor stimulated axonal outgrowth from adult mouse dorsal root ganglia in vitro. Neuroscience 100:407–416

    PubMed  Google Scholar 

  • Skoglund S (1967) On the possible postnatal formation of new nerve fibres in the dorsal roots from new nerve cells in the ganglia. An autoradiographic study with H3-thymidine in the cat. Acta Soc Med Upsalien 72:25–29

    CAS  Google Scholar 

  • Spataro LE, Sloane LM, Milligan ED, Wieseler-Frank J, Schoeniger D, Jekich BM, Barrientos RM, Maier SF, Watkins LR (2004) Spinal gap junctions: potential involvement in pain facilitation. J Pain 5:392–405

    CAS  PubMed  Google Scholar 

  • Spencer PS, Peterson ER, Madrid RA, Raine CS (1973) Effects of thallium salts on neuronal mitochondria in organotypic cord-ganglia-muscle combination cultures. J Cell Biol 58:79–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spoerri PE, Glees P (1974) The effects of dimethylaminoethyl p-chlorophenoxyacetate on spinal ganglia neurons and satellite cells in culture. Mitochondrial changes in the aging neurons. An electron microscope study. Mech Ageing Dev 3:131–155

    CAS  PubMed  Google Scholar 

  • Srebro Z (1965) The ultrastructure of gliosomes in the brains of amphibia. J Cell Biol 26:313–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stefansson K, Wollmann RL, Moore BW (1982) Distribution of S-100 protein outside the central nervous system. Brain Res 234:309–317

    CAS  PubMed  Google Scholar 

  • Stensaas LJ, Fidone SJ (1977) An ultrastructural study of cat petrosal ganglia: a search for autonomic ganglion cells. Brain Res 124:29–39

    CAS  PubMed  Google Scholar 

  • Stephenson JL, Byers MR (1995) GFAP immunoreactivity in trigeminal ganglion satellite cells after tooth injury in rats. Exp Neurol 131:11–22

    CAS  PubMed  Google Scholar 

  • Stewart HJS, Rougon G, Dong Z, Dean C, Jessen KR, Mirsky R (1995) TGF-βs upregulate NCAM and L1 expression in cultured Schwann cells, suppress cyclic AMP-induced expression of 04 and galactocerebroside, and are widely expressed in cells of the Schwann cell lineage in vivo. Glia 15:419–436

    CAS  PubMed  Google Scholar 

  • Stöhr Ph Jr (1928) Das peripherische Nervensystem. A. Die Anteile des cerebrospinalen Nervensystems. In: von Möllendorf W (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen, Bd 4/1, S 202–264. Springer, Berlin

    Google Scholar 

  • Stramignoni A (1953) Morfologia e struttura dei cosiddetti satelliti perineuronali dei gangli spinali, loro alterazioni cadaveriche e comportamento in alcune condizioni patologiche. Arch Sci Med 78:231–255

    Google Scholar 

  • Streeter GL (1905) On the histogenesis of spinal ganglia in mammals. Am J Anat 4:XIII

    Google Scholar 

  • Streeter GL (1912) The development of the nervous system. In: Keibel F, Mall FP (eds) Manual of human embryology, vol 2. Lippincott, Philadelphia, London, pp 1–156

    Google Scholar 

  • Suadicani SO, Cherkas PS, Zuckerman J, Smith DN, Spray DC, Hanani M (2010) Bidirectional calcium signaling between satellite glial cells and neurons in cultured mouse trigeminal ganglia. Neuron Glia Biol 6:43–51

    PubMed  Google Scholar 

  • Sugimoto T, Takeyama A, Fujita M, Ichikawa H, Takano-Yamamoto T (2001) Peripheral neuroglial death induced by cisplatin administration in newborn rats. Neuroreport 12:137–140

    CAS  PubMed  Google Scholar 

  • Sulkin DF, Sulkin NM, Nushan H (1973) Fine structure of sensory ganglia during experimental scurvy. Acta Neuropathol 23:141–151

    CAS  PubMed  Google Scholar 

  • Sylvia AL, Rosenthal M (1979) Effects of age on brain oxidative metabolism in vivo. Brain Res 165:235–248

    CAS  PubMed  Google Scholar 

  • Takeda M, Tanimoto T, Kadoi J, Nasu M, Takahashi M, Kitagawa J, Matsumoto S (2007) Enhanced excitability of nociceptive trigeminal ganglion neurons by satellite glial cytokine following peripheral inflammation. Pain 129:155–166

    CAS  PubMed  Google Scholar 

  • Takeda M, Takahashi M, Matsumoto S (2008) Contribution of activated interleukin receptors in trigeminal ganglion neurons to hyperalgesia via satellite glial interleukin-1β paracrine mechanism. Brain Behav Immun 22:1016–1023

    CAS  PubMed  Google Scholar 

  • Takeda M, Takahashi M, Nasu M, Matsumoto S (2011) Peripheral inflammation suppresses inward rectifying potassium currents of satellite glial cells in the trigeminal ganglia. Pain 152:2147–2156

    CAS  PubMed  Google Scholar 

  • Takeda M, Nasu M, Kanazawa T, Shimazu Y (2015) Activation of GABAB receptors potentiates inward rectifying potassium currents in satellite glial cells from rat trigeminal ganglia: in vivo patch-clamp analysis. Neuroscience 288:51–58

    CAS  PubMed  Google Scholar 

  • Tata AM, Vilarό MT, Agrati C, Biagioni S, Mengod G, Augusti-Tocco G (1999) Expression of muscarinic m2 receptor mRNA in dorsal root ganglia of neonatal rat. Brain Res 824:63–70

    CAS  PubMed  Google Scholar 

  • Tennyson VM (1965) Electron microscopic study of the developing neuroblast of the dorsal root ganglion of the rabbit embryo. J Comp Neurol 124:267–318

    CAS  PubMed  Google Scholar 

  • Tennyson VM (1970) The fine structure of the developing nervous system. In: Himwich WA (ed) Developmental neurobiology. Thomas, Springfield, pp 47–116

    Google Scholar 

  • Thippeswamy T, Mckay JS, Morris R, Quinn J, Wong L-F, Murphy D (2005) Glial-mediated neuroprotection: evidence for the protective role of the NO-cGMP pathway via neuron-glial communication in the peripheral nervous system. Glia 49:197–210

    PubMed  Google Scholar 

  • Tischner K, Fischer HA (1975) Uptake of tritium labelled chloroquine into organized cultures of rat spinal ganglia. An electron microscope autoradiographic study. Acta Neuropathol 32:353–357

    CAS  PubMed  Google Scholar 

  • Tischner K, Murray MR (1972) The effects of sodium azide on cultures of peripheral nervous system. A. Light and electron microscope study. J Neuropathol Exp Neurol 31:393–410

    CAS  PubMed  Google Scholar 

  • Tischner K, Schröder JM (1972) The effects of cadmium chloride on organotypic cultures of rat sensory ganglia. A light and electron microscope study. J Neurol Sci 16:383–399

    CAS  PubMed  Google Scholar 

  • Truex RC (1939) Observations on the chicken Gasserian ganglion with special reference to the bipolar neurons. J Comp Neurol 71:473–486

    Google Scholar 

  • Tuchweber B, Kovacs K, Khandekar JD, Garg BD (1972) Intramitochondrial lamellar formations induced by pregnenolone-16-α-carbonitrile in the hepatocytes of pregnant rats. J Ultrastruct Res 39:456–464

    CAS  PubMed  Google Scholar 

  • Unsicker K (1967) Über die Ganglienzellen im Nebennierenmark des Goldhamsters (Mesocricetus auratus). Ein Beitrag zur Frage der peripheren Neurosekretion. Z Zellforsch 76:187–219

    Google Scholar 

  • Vaegter CB (2014) Neurotrophins and their receptors in satellite glial cells following nerve injury. Neural Regen Res 9:2038–2039

    PubMed  PubMed Central  Google Scholar 

  • Valentin G (1836) Über den Verlauf und die letzten Enden der Nerven. Verhandlungen der Kaiserlichen Leopoldinisch-Carolinischen Akademie der Naturforscher 18:51–240

    Google Scholar 

  • Valentin G (1839) Über die Scheiden der Ganglienkugeln und deren Fortsetzungen. Arch Anat Physiol Wiss Med 139–164

    Google Scholar 

  • van den Bosch de Aguilar P, Vanneste J (1983) The microenvironment of the spinal ganglion neuron in the rat during aging. Exp Neurol 81:294–307

    PubMed  Google Scholar 

  • Van Gehuchten A (1892) Nouvelles recherches sur les ganglions cérébro-spinaux. La Cellule 8:233–253

    Google Scholar 

  • Varon S (1976) Glia, nerve growth factor and ganglionic metabolism. In: Ahtee L (ed) Neurotransmission. Pergamon, Oxford, pp 275–284

    Google Scholar 

  • Varon S, Raiborn C (1972) Dissociation, fractionation and culture of chick embryo sympathetic ganglionic cells. J Neurocytol 1:211–221

    CAS  PubMed  Google Scholar 

  • Varon S, Raiborn C, Tyszka E (1973) In vitro studies of dissociated cells from newborn mouse dorsal root ganglia. Brain Res 54:51–63

    CAS  PubMed  Google Scholar 

  • Varon S, Raiborn C, Burnham P (1974) Comparative effects of nerve growth factor and ganglionic nonneuronal cells on purified mouse ganglionic neurons in culture. J Neurobiol 5:355–371

    CAS  PubMed  Google Scholar 

  • Vause CV, Durham PL (2010) Calcitonin gene-related peptide differentially regulates gene and protein expression in trigeminal glia cells: findings from array analysis. Neurosci Lett 473:163–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vega JA, Rodriguez C, Medina M, del Valle-Soto ME, Hernandez LC (1989) Expression of cytoskeletal proteins in glial cells of dorsal root ganglia. Cell Mol Biol 35:635–641

    CAS  PubMed  Google Scholar 

  • Verbavatz J-M, Ma T, Gobin R, Verkman AS (1997) Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin-4. J Cell Sci 110:2855–2860

    CAS  PubMed  Google Scholar 

  • Vesin M-F, Urade Y, Hayaishi O, Droz B (1995) Neuronal and glial prostaglandin D synthase isozymes in chick dorsal root ganglia: a light and electron microscopic immunocytochemical study. J Neurosci 15:470–476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vit J-P, Jasmin L, Bhargava A, Ohara PT (2006) Satellite glial cells in the trigeminal ganglion as a determinant of orofacial neuropathic pain. Neuron Glia Biol 2:247–257

    PubMed  PubMed Central  Google Scholar 

  • Vit J-P, Ohara PT, Bhargava A, Kelley K, Jasmin L (2008) Silencing the Kir4.1 potassium channel subunit in satellite glial cells of the rat trigeminal ganglion results in pain-like behavior in the absence of nerve injury. J Neurosci 28:4161–4171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner R (1846) Sympathischer Nerv, Ganglienstructur und Nervenendigungen. In: Wagner R (Hrsg) Handwörterbuch der Physiologie 3/I. Vieweg, Braunschweig, S 360–406

    Google Scholar 

  • Wakisaka H, Kobayashi N, Mominoki K, Saito S, Honda N, Hato N, Gyo K, Matsuda S (2001) Herpes simplex virus in the vestibular ganglion and the geniculate ganglion—role of loose myelin. J Neurocytol 30:685–693

    CAS  PubMed  Google Scholar 

  • Wall PD, Devor M (1983) Sensory afferent impulses originate from dorsal root ganglia as well as from the periphery in normal and nerve injured rats. Pain 17:321–339

    CAS  PubMed  Google Scholar 

  • Watanabe PG, Sharma RP (1975) Neurotoxicity of organophosphates. Effects of tri-o-tolyl phosphate in chick ganglia cell cultures. J Comp Pathol 85:373–381

    CAS  PubMed  Google Scholar 

  • Waxman SG, Dichter MA, Hartwieg EA, Matheson JK (1977) Recapitulation of normal neuro-glial relation in dissociated cell cultures of dorsal root ganglia. Brain Res 122:344–350

    CAS  PubMed  Google Scholar 

  • Weick M, Cherkas PS, Härtig W, Pannicke T, Uckermann O, Bringmann A, Tal M, Reichenbach A, Hanani M (2003) P2 receptors in satellite glial cells in trigeminal ganglia of mice. Neuroscience 120:969–977

    CAS  PubMed  Google Scholar 

  • Weis P (1971) The in vitro effect of the nerve growth factor on chick embryo spinal ganglia: an electron microscopic evaluation. J Comp Neurol 141:117–132

    CAS  PubMed  Google Scholar 

  • Wen JYM, Morshead CM, van der Kooy D (1994) Satellite cell proliferation in the adult rat trigeminal ganglion results from the release of a mitogenic protein from explanted sensory neurons. J Cell Biol 124:1005–1015

    CAS  PubMed  Google Scholar 

  • Werner MH, Nanney LB, Stoscheck CM, King LE (1988) Localization of immunoreactive epidermal growth factor receptors in human nervous system. J Histochem Cytochem 36:81–86

    CAS  PubMed  Google Scholar 

  • Wetmore C, Olson L (1995) Neuronal and nonneuronal expression of neurotrophins and their receptors in sensory and sympathetic ganglia suggest new intercellular trophic interactions. J Comp Neurol 353:143–159

    CAS  PubMed  Google Scholar 

  • Whetsell WO Jr, Bunge RP (1969) Reversible alterations in the Golgi complex of cultured neurons treated with an inhibitor of active Na and K transport. J Cell Biol 42:490–500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whetsell WO Jr, Schwartz J, Elizan TS (1977) Comparative effects of herpes simplex virus types 1 and 2 in organotypic cultures of mouse dorsal root ganglion. J Neuropathol Exp Neurol 36:547–560

    PubMed  Google Scholar 

  • Wilkinson R, Leaver C, Simmons A, Pereira RA (1999) Restricted replication of herpes simplex virus in satellite glial cell cultures clonally derived from adult mice. J Neuro Virol 5:384–391

    CAS  Google Scholar 

  • Woodham P, Anderson PN, Nadim W, Turmaine M (1989) Satellite cells surrounding axotomised rat dorsal root ganglion cells increase expression of a GFAP-like protein. Neurosci Lett 98:8–12

    CAS  PubMed  Google Scholar 

  • Woodhoo A, Dean CH, Droggiti A, Mirsky R, Jessen KR (2004) The trunk neural crest and its early glial derivatives: a study of survival responses, developmental schedules and autocrine mechanisms. Mol Cell Neurosci 25:30–41

    CAS  PubMed  Google Scholar 

  • Wu H-H, Bellmunt E, Scheib JL, Venegas V, Burkert C, Reichardt LF, Zhou Z, Fariñas I, Carter BD (2009) Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor. Nat Neurosci 12:1534–1541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wyburn GM (1958) The capsule of spinal ganglion cells. J Anat 92:528–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xian CJ, Zhou X-F (1999) Neuronal-glial differential expression of TGF-α and its receptor in the dorsal root ganglia in response to sciatic nerve lesion. Exp Neurol 157:317–326

    CAS  PubMed  Google Scholar 

  • Yamadori T (1970) A light and electron microscopic study on the postnatal development of spinal ganglia in rats. Acta Anat Nippon 45:191–205

    CAS  PubMed  Google Scholar 

  • Yamamoto M, Fan L, Wakayama T, Amano O, Iseki S (2001) Constitutive expression of the 27-kDa heat-shock protein in neurons and satellite cells in the peripheral nervous system of the rat. Anat Rec 262:213–220

    CAS  PubMed  Google Scholar 

  • Yamashita N, Sakai K, Furuya S, Watanabe M (2003) Selective expression of L-serine synthetic enzyme 3PGDH in Schwann cells, perineuronal glia, and endoneurial fibroblasts along rat sciatic nerves and its upregulation after crush injury. Arch Histol Cytol 66:429–436

    CAS  PubMed  Google Scholar 

  • Yarygin KN, Doronin PP, Rodionov IM, Yarygin VN, Giber LM (1976) The study of neurons and glial cells in sympathetic ganglia in mice of different age. III. A study of perikaryal satellite cells in normal animals and in mice with sharply reduced number of ganglionic neurons (Russian text). Tsitologiia 18:944–949

    Google Scholar 

  • Yates RD (1961) A study of cell division in chick embryonic ganglia. J Exp Zool 147:167–181

    CAS  PubMed  Google Scholar 

  • Yntema CL (1937) An experimental study of the origin of the cells which constitute the VIIth and VIIIth cranial ganglia and nerves in the embryo of Amblystoma punctatum. J Exp Zool 75:75–101

    Google Scholar 

  • Yntema CL (1943) An experimental study on the origin of the sensory neurones and sheath cells of the IXth and Xth cranial nerves in Amblystoma punctatum. J Exp Zool 92:93–119

    Google Scholar 

  • Yonezawa T, Iwanami H (1966) An experimental study of thiamine deficiency in nervous tissue, using tissue culture technics. J Neuropathol Exp Neurol 25:362–372

    CAS  PubMed  Google Scholar 

  • Yonezawa T, Mori T, Nakatani Y (1969) Effects of pyridoxine deficiency in nervous tissue maintained in vitro. Ann N Y Acad Sci 166:146–157

    CAS  PubMed  Google Scholar 

  • Young JAC, Brown DA, Kelly JS, Schon F (1973) Autoradiographic localization of sites of [3H] γ aminobutyric acid accumulation in peripheral autonomic ganglia. Brain Res 63:479–486

    CAS  PubMed  Google Scholar 

  • Zerboni L, Arvin A (2015) Neuronal subtype and satellite cell tropism are determinants of varicella-zoster virus virulence in human dorsal root ganglia xenografts in vivo. PLoS Pathog 11:e1004989

    PubMed  PubMed Central  Google Scholar 

  • Zhang J-M, Donnelly DF, Song X-J, LaMotte RH (1997) Axotomy increases the excitability of dorsal root ganglion cells with unmyelinated axons. J Neurophysiol 78:2790–2794

    CAS  PubMed  Google Scholar 

  • Zhang Y, Roslan R, Lang D, Schachner M, Lieberman AR, Anderson PN (2000) Expression of CHL1 and L1 by neurons and glia following sciatic nerve and dorsal root injury. Mol Cell Neurosci 16:71–86

    PubMed  Google Scholar 

  • Zhang X-F, Han P, Faltynek CR, Jarvis MF, Shieh C-C (2005) Functional expression of P2X7 receptors in non-neuronal cells of rat dorsal root ganglia. Brain Res 1052:63–70

    CAS  PubMed  Google Scholar 

  • Zhang X, Chen Y, Wang C, Huang L-YM (2007) Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci U S A 104:9864–9869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Mei X, Zhang P, Ma C, White FA, Donnelly DF, LaMotte RH (2009) Altered functional properties of satellite glial cells in compressed spinal ganglia. Glia 57:1588–1599

    PubMed  PubMed Central  Google Scholar 

  • Zhou X-F, Rush RA, McLachlan EM (1996) Differential expression of the p75 nerve growth factor receptor in glia and neurons of the rat dorsal root ganglia after peripheral nerve transection. J Neurosci 16:2901–2911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X-F, Deng Y-S, Chie E, Xue Q, Zhong J-H, McLachlan EM, Rush RA, Xian CJ (1999) Satellite-cell-derived nerve growth factor and neurotrophin-3 are involved in noradrenergic sprouting in the dorsal root ganglia following peripheral nerve injury in the rat. Eur J Neurosci 11:1711–1722

    CAS  PubMed  Google Scholar 

  • Ziegler RJ, Herman RE (1980) Peripheral infection in culture of rat sensory neurons by herpes simplex virus. Infect Immun 28:620–623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler RJ, Pozos RS (1977) Ultrastructural effects of herpes simplex virus type 2 infection of rat dorsal root ganglia in culture. J Neuropathol Exp Neurol 36:680–692

    CAS  PubMed  Google Scholar 

  • Zimmerman E, Karsh D, Humbertson A Jr (1971) Initiating factors in perineuronal cell hyperplasia associated with chromatolytic neurons. Z Zellforsch 114:73–82

    CAS  PubMed  Google Scholar 

  • Zimmermann A, Sutter A (1983) β-Nerve growth factor (βNGF) receptors on glial cells. Cell-cell interaction between neurones and Schwann cells in cultures of chick sensory ganglia. EMBO J 2:879–885

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pannese, E. (2018). Biology and Pathology of Perineuronal Satellite Cells in Sensory Ganglia. In: Biology and Pathology of Perineuronal Satellite Cells in Sensory Ganglia. Advances in Anatomy, Embryology and Cell Biology, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-60140-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60140-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60139-7

  • Online ISBN: 978-3-319-60140-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics