Skip to main content

Qualification and Testing of CT Systems

  • Chapter
  • First Online:
Industrial X-Ray Computed Tomography

Abstract

This chapter focuses on system verification and conformance to specifications. System qualification is carried out to ensure that the system and its components achieve the best performance—usually corresponding to the specifications made by the manufacturer. Acceptance and reverification testing are undertaken on the overall integrated system to check whether the system performs as specified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Angel J, De Chiffre L (2014) Comparison on computed tomography using industrial items. CIRP Ann 63:473–476. doi:10.1016/j.cirp.2014.03.034

    Article  Google Scholar 

  • Angel J, Christensen LB, Cantatore A, De Chiffre L (2014) Inter laboratory comparison on computed tomography for industrial applications in the slaughterhouses: CIA-CT comparison. CIA-CT technical report, 76 p

    Google Scholar 

  • Arenhart FA, Nardelli VC, Donatelli GD (2015) Characterization of the metrological structural resolution of ct systems using a multi-wave standard. In: Proceedings of the XXI IMEKO world congress “measurement in research and industry”, Prague, Czech Republic, 2015, online: http://www.imeko.org/publications/wc-2015/IMEKO-WC-2015-TC14–282.pdf

  • ASTM E 1441 (2011) Standard guide for computed tomography (CT) imaging

    Google Scholar 

  • ASTM E 1672 (2012) Standard Guide for Computed Tomography (CT) System Selection

    Google Scholar 

  • ASTM E 1695 (1995) Standard test method for measurement of computed tomography (CT) system performance

    Google Scholar 

  • ASTM E 2767 (2013) Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for X-ray computed tomography (CT) test methods

    Google Scholar 

  • Barrett HB, Myers KJ (2004) Foundations of image science. Wiley, Hoboken. ISBN 0-471-15300-1

    Google Scholar 

  • Bartscher M, Hilpert U, Härtig F, Neuschaefer-Rube U, Goebbels J, Staude A (2008) Industrial computed tomography, an emerging coordinate measurement technology with high potentials. In: Proceedings of NCSL 2008 international workshop & symposium. ISBN 1–584-64058-8

    Google Scholar 

  • Bartscher M, Illemann J, Neuschaefer-Rube U (2016) ISO test survey on material influence in dimensional computed tomography. Case Stud Nondestruct Test Eval. doi:10.1016/j.csndt.2016.04.001

    Google Scholar 

  • Borges de Oliveira F, Bartscher M, Neuschaefer-Rube U (2015) Analysis of combined probing measurement error and length measurement error test for acceptance testing in dimensional computed tomography. In: Proceedings of DIR 2015 in NDT.net, online: www.ndt.net/events/DIR2015/app/content/Paper/31_BorgesdeOliveira.pdf

  • Borges de Oliveira F, Bartscher M, Neuschaefer-Rube U, Tutsch R, Hiller J (2017a) Creating a multi-material length measurement error test for the acceptance testing of dimensional computed tomography systems. In: Proceedings of iCT 2017 conference, Leuven, Belgium, in NDT.net, online: http://www.ndt.net/events/iCT2017/app/content/Extended_Abstract/57_BorgesdeOliveira_Rev2.pdf

  • Borges de Oliveira F, Stolfi A, Bartscher M, Neugebauer M (2017b) Creating a multi-material probing error test for the acceptance testing of dimensional computed tomography systems. In: Proceedings of iCT 2017 conference, Leuven, Belgium, in NDT.net, online: http://www.ndt.net/events/DIR2015/app/content/Paper/31_BorgesdeOliveira.pdf

  • Cantatore A, Andreasen JL, Carmignato S, Müller P, De Chiffre L (2011) Verification of a CT scanner using a miniature step gauge. In: Proceedings of 11th EUSPEN international conference, Como, Italy  

    Google Scholar 

  • Carmignato S (2012) Accuracy of industrial computed tomography measurements: experimental results from an international comparison. CIRP Ann Manuf Technol 61–1:491–494. doi:10.1016/j.cirp.2012.03.021

  • Carmignato S, Pierobon A, Rampazzo P, Parisatto M, Savio E (2012) CT for Industrial Metrology - Accuracy and structural resolution of CT dimensional measurements, Proc. of iCT 2012 in NDT.net, online: http://www.ndt.net/article/ctc2012/papers/173.pdf

  • Christoph R, Neumann H-J (2011) X-ray tomography in industrial metrology. Süddeutscher Verlag onpact GmbH. ISBN 978-3-86236-020-8

    Google Scholar 

  • DIN EN 16016-3:2012-12 (2012) Non destructive testing—radiation methods—computed tomography—Part 3: Operation and interpretation. German version EN 16016-3:2012

    Google Scholar 

  • EN 16016-1:2011-12 (2011) Non destructive testing—radiation methods—computed tomography—Part 1: Terminology. Trilingual version

    Google Scholar 

  • EN 16016-2:2012-01 (2012) Non destructive testing—radiation methods—computed tomography—Part 2: Principle, equipment and samples

    Google Scholar 

  • EN 16016-3:2012-12 (2012) Non destructive testing—radiation methods—computed tomography—Part 3: Operation and interpretation. German version EN 16016-3:2011

    Google Scholar 

  • EN 16016-4:2012-01 (2012) Non destructive testing—Radiation methods—Computed tomography—Part 4: Qualification

    Google Scholar 

  • Fleßner M, Vujaklija N, Helmecke E, Hausotte T (2014) Determination of metrological structural resolution of a CT system using the frequency response on surface structures. In: Proceedings MacroScale, Vienna, Austria

    Google Scholar 

  • Fleßner M, Helmecke E, Staude A, Hausotte T (2015) CT measurements of microparts: numerical uncertainty determination and structural resolution. In: Proceedings of SENSOR 2015. doi:10.5162/sensor2015/C8.2

  • Hermanek P, Carmignato S (2016) Reference object for evaluating the accuracy of porosity measurements by X-ray computed tomography. Case Stud Nondestr Test Eval. doi:10.1016/j.csndt.2016.05.003

    Google Scholar 

  • Hiller J, Maisl M, Reindl LM (2012) Physical characterization and performance evaluation of an X-ray micro-computed tomography system for dimensional metrology applications. Meas Sci Technol 23:1–18. doi:10.1088/0957-0233/23/8/085404

  • Illemann J, Bartscher M, Jusko O, Härtig F, Neuschaefer-Rube U, Wendt K (2014) Procedure and reference standard to determine the structural resolution in coordinate metrology. Meas Sci Technol 25:6. doi:10.1088/0957-0233/25/6/064015

    Article  Google Scholar 

  • Illemann J, Bartscher M, Neuschaefer-Rube U (2015) An efficient procedure for traceable dimensional measurements and the characterization of industrial CT systems. In: Proceedings of DIR 2015 in NDT.net, online: www.ndt.net/events/DIR2015/app/content/Paper/46_Illemann.pdf

  • Illers H, Buhr E, Hoeschen C (2005) Measurement of the detective quantum efficiency (DQE) of digital X-ray detectors according to the novel standard IEC 62220-1. Radiat Prot Dosimetry 114(1–3):39–44. doi:10.1093/rpd/nch507

    Article  Google Scholar 

  • INTERAQCT (2016) International network for the training of early stage researchers on advanced quality control by computed tomography. http://www.interaqct.eu

  • ISO 10360-2 (2009) Geometrical product specifications (GPS)—acceptance and reverification tests for coordinate measuring machines (CMM)—Part 2: CMMs used for measuring linear dimensions. International Organization for Standardization

    Google Scholar 

  • ISO 15530-3:2011-10 (2011) Geometrical product specifications (GPS)—coordinate measuring machines (CMM): technique for determining the uncertainty of measurement—Part 3: Use of calibrated workpieces or measurement standards

    Google Scholar 

  • ISO/TS 23165 (2006) Geometrical product specifications (GPS)—guidelines for the evaluation of coordinate measuring machine (CMM) test uncertainty

    Google Scholar 

  • JIMA Mask (2006) Japan Inspection Instruments Manufacturers’ Association. Micro resolution chart for X-ray JIMA RT RC02B, online exhibition catalogue. Accessed 29th Sept 2016: http://www.jima.jp/content/pdf/catalog_rt_rc02b_eng.pdf

  • Jusko O, Lüdicke F (1999) Novel multi-wave standards for the calibration of form measuring instruments. In: Proceedings of 1st EUSPEN international conference, Aachen, Germany, vol 2, pp 299–302. ISBN 3-8265-6085-X

    Google Scholar 

  • Kiekens K, Welkenhuyzen F, Tan Y, Bleys P, Voet A, Kruth J-P, Dewulf W (2011) A test object with parallel grooves for calibration and accuracy assessment of industrial computed tomography (CT) metrology. Meas Sci Technol 22:115502

    Google Scholar 

  • Kingston A, Sakellariou A, Varslot T, Myers G, Sheppard A (2011) Reliable automatic alignment of tomographic projection data by passive auto-focus. Med Phys 38:4934. doi:10.1118/1.3609096

    Article  Google Scholar 

  • Léonard F,  Brown S, Withers P, Mummery P, McCarthy M (2014) A new method of performance verification for x-ray computed tomography measurements. Meas Sci Technol 25(6):065401

    Google Scholar 

  • Müller P (2012) Doctoral dissertation. Technical University of Denmark

    Google Scholar 

  • Neuschaefer-Rube U, Bartscher M, Bremer H, Birth T, Härtig F (2012) Lösungsansätze zur Messung von Kanten und Radien mit Computertomographie, presentation at the “XIII Internationales Oberflächenkolloquium. Chemnitz, Germany

    Google Scholar 

  • QRM, Quality Assurance in Radiology and Medicine GmbH, Möhrendorf, Germany, online exhibition catalogue. Accessed 29th Sept 2016: http://www.qrm.de/content/pdf/QRM-MicroCT-Barpattern-Phantom.pdf, http://www.qrm.de/content/pdf/QRM-MicroCT-Barpattern-NANO.pdf

  • Salesbury JG (2012) Developments in the international standardization of testing methods for CMMs with imaging probing systems. NCSL International Workshop & Symposium. http://www.ncsli.org/i/c/TransactionLib/REG_2012.MAN.874.1569.pdf

  • Sasov A, Liu X, Salmon PL (2008) Compensation of mechanical inaccuracies in micro-CT and nano-CT. In: Proceedings of SPIE, vol 7078. Developments in X-ray tomography VI. doi:10.1117/12.793212

  • Seewig J, Eifler M, Wiora G (2014) Unambiguous evaluation of a chirp measurement standard. Surf Topogr Metrol Prop 2:045003. doi:10.1088/2051-672X/2/4/045003

    Article  Google Scholar 

  • Siemens OEM (2017) CERA—Software for high-quality CT imaging. Available at: http://www.oem-products.siemens.com/software-components. Accessed 17th Aug 2017

  • Sire P, Rizo P, Martin M (1993) X-ray cone beam CT system calibration. In: Proceedings of SPIE, vol 2009, pp 229–239

    Google Scholar 

  • Smekal L, Kachelrieß M, Stepina E, Kalender WA (2004) Geometric misalignment and calibration in cone-beam tomography. Med Phys 31(12):3242–3266. doi:10.1118/1.1803792

    Article  Google Scholar 

  • Stolfi A, De Chiffre L (2016) Selection of items for “InteraqCT Comparison on Assemblies”. In: Proceedings of iCT 2016 in NDT.net, online: http://www.ndt.net/article/ctc2016/papers/ICT2016_paper_id70.pdf

  • VDI/VDE 2617-6.2:2005-10 (2005) Accuracy of coordinate measuring machines - Characteristics and their testing—guideline for the application of DIN EN ISO 10360 to coordinate measuring machines with optical distance sensors

    Google Scholar 

  • VDI/VDE 2617-6.1:2007-05 (2007) Accuracy of coordinate measuring machines—characteristics and their testing—coordinate measuring machines with optical probing—code of practice for the application of DIN EN ISO 10360 to coordinate measuring machines with optical sensors for lateral structures

    Google Scholar 

  • VDI/VDE 2630-1.3: 2011–12 (2011) Computed tomography in dimensional measurement—guideline for the application of DIN EN ISO 10360 for coordinate measuring machines with CT-sensors

    Google Scholar 

  • Weiss D (2005) Verfahren und eine Anordnung zum Kalibrieren einer Messanordnung, European Patent, EP1760457 (A2)

    Google Scholar 

  • Zanini F, Carmignato S (2017) Two-spheres method for evaluating the metrological structural resolution in dimensional computed tomography. Meas Sci Technol, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Bartscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bartscher, M., Neuschaefer-Rube, U., Illemann, J., Borges de Oliveira, F., Stolfi, A., Carmignato, S. (2018). Qualification and Testing of CT Systems. In: Carmignato, S., Dewulf, W., Leach, R. (eds) Industrial X-Ray Computed Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-59573-3_6

Download citation

Publish with us

Policies and ethics