Skip to main content

Principles of X-ray Computed Tomography

  • Chapter
  • First Online:
Industrial X-Ray Computed Tomography

Abstract

In this chapter, the physical and mathematical principles of X-ray computed tomography are summarised. First, the fundamentals of X-ray physics are covered, with details on generation, propagation and attenuation of X-rays, including a brief introduction to phase-contrast and dark-field imaging. Then, the basics of detection, digitisation and processing of X-ray images are discussed. Finally, the chapter focuses on the fundamentals of tomographic reconstruction and introduces the main reconstruction algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal BK (2013) X-ray spectroscopy: an introduction. Springer, Berlin

    Google Scholar 

  • Arias-Castro E, Donoho DL (2009) Does median filtering truly preserve edges better than linear filtering? Ann Stat 1172–206

    Google Scholar 

  • Bae S, Paris S, Durand F (2006) Two-scale tone management for photographic look. ACM Trans Graph (TOG) 25(3):637–645

    Article  Google Scholar 

  • Banhart J (2008) Advanced tomographic methods in materials research and engineering. Oxford University Press, Oxford

    Book  Google Scholar 

  • Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker DS, Olsen K (2010) XCOM: photon cross section database. National Institute of Standards and Technology, Gaithersburg, MD, http://physics.nist.gov/xcom. Accessed 4 Apr 2016

  • Buzug TM (2008) Computed tomography: from photon statistics to modern cone-beam CT. Springer, Berlin

    Google Scholar 

  • Carroll QB (2011) Radiography in the digital age. Charles C Thomas, Springfield (IL)

    Google Scholar 

  • Castleman KR (1996), Digital image processing. 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Cierniak R (2011) X-Ray computed tomography in biomedical engineering. Springer, London

    Book  Google Scholar 

  • Cormack AM (1963) Representation of a function by its line integrals, with some radiological applications. J Appl Phys 34:2722

    Article  Google Scholar 

  • Cunningham IA (2000) Computed tomography. In: Bronzino JD (ed) The biomedical engineering handbook, vol I. CRC, Boca Raton, pp 61–62

    Google Scholar 

  • Curry TS, Dowdey JE, Murry RC (1990) Christensen’s physics of diagnostic radiology. Lippincott Williams & Wilkins, Philadelphia (PA)

    Google Scholar 

  • De Chiffre L, Carmignato S, Kruth J-P, Schmitt R, Weckenmann A (2014) Industrial applications of computed tomography. CIRP Annals—Manufact Technol 63(2):655–677. doi: 10.1016/j.cirp.2014.05.011

  • Durand F, Dorsey J (2002) Fast bilateral filtering for the display of high-dynamic-range images. InACM transactions on graphics (TOG) 21(3):257–266

    Google Scholar 

  • Edholm P, Herman G, Roberts D (1988) Image reconstruction from linograms: implementation and evaluation. IEEE Trans Med Imaging 7(3):239–246

    Article  Google Scholar 

  • Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1(6):612–619

    Article  Google Scholar 

  • Fessler JA (2000) Statistical image reconstruction methods for transmission tomography. Hand book of medical imaging, vol 2. Medical Image Processing and Analysis. SPIE Press, Bellingham

    Google Scholar 

  • Fuchs T, Kachelrieß M, Kalender WA (2000) Direct comparison of a xenon and a solid-state CT detector system: measurements under working conditions. IEEE Trans Med Imaging 19(9):941–948

    Article  Google Scholar 

  • Grangeat P (1990) Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform. In: Herman GT, Louis AK, Natterer F (eds) (1991) Mathematical methods in tomography. Springer, Berlin, pp 66–97

    Google Scholar 

  • Gui ZG, Liu Y (2012) Noise reduction for low-dose X-ray computed tomography with fuzzy filter. Optik-Int J Light Electron Opt 123(13):1207–1211

    Article  Google Scholar 

  • He K, Sun J, Tang X (2013) Guided image filtering. IEEE Trans Pattern Anal Mach Intell 35(6):1397–1409

    Article  Google Scholar 

  • Herman GT, Meyer LM (1993) Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans Med Imaging 12(3):600–609

    Article  Google Scholar 

  • Herman GT, Louis A K., Natterer F (1991) Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform. Springer, Berlin

    Google Scholar 

  • Hsieh J (2009) Computed tomography: principles, design, artifacts, and recent advances. SPIE, Bellingham

    Google Scholar 

  • Hsieh J, Nett B, Yu Z, Sauer K, Thibault JB, Bouman CA (2013) Recent advances in CT image reconstruction. Curr Radiol Rep 1(1):39–51

    Article  Google Scholar 

  • Jackson DF, Hawkes DJ (1981) X-ray attenuation coefficients of elements and mixtures. Phys Rep 70(3):169–233

    Article  Google Scholar 

  • Jenkins R, Snyder RL (1996) Introduction to x-ray powder diffractometry. Chem Anal 138

    Google Scholar 

  • Kak AC, Slaney M (2001) Principles of computerized tomographic imaging. Society of Industrial and Applied Mathematics

    Google Scholar 

  • Kalender WA (2011) Computed tomography: fundamentals, system technology, image quality, applications. Wiley, New York

    Google Scholar 

  • Katsevich A (2003) A general schedule for constructing inversion algorithm for cone beam CT. Int J Math Math Sci 21:1305–1321

    Article  Google Scholar 

  • Leroy C, Rancoita PG (2004) Principles of radiation interaction in matter and detection. World Scientific Publishing, Singapore

    Google Scholar 

  • Lifshin E (1999) X-ray characterization of materials. Wiley, New York

    Google Scholar 

  • Lukac R, Smolka B, Martin K, Plataniotis KN, Venetsanopoulos AN (2005) Vector filtering for color imaging. Sig Process Mag IEEE 22(1):74–86

    Article  Google Scholar 

  • Lyra M, Ploussi A (2011) Filtering in SPECT image reconstruction. J Biomed Imaging 2011:10

    Google Scholar 

  • Mannigfaltigkeiten, Saechsische Akademie der Wissenschaftten, Leipzig, Berichte über die Verhandlungen, 69, 262–277

    Google Scholar 

  • Müller P, De Chiffre L, Hansen HN, Cantatore A (2013) Coordinate metrology by traceable computed tomography, PhD Thesis. Technical University of Denmark

    Google Scholar 

  • O’Sullivan J (1985) A fast sinc function gridding algorithm for Fourier inversion in computer tomography. IEEE Trans Med Imaging 4(4):200–207

    Article  Google Scholar 

  • Panetta D (2016) Advances in X-ray detectors for clinical and preclinical computed tomography. Nucl Instrum Methods Phys Res Sect A 809:2–12

    Article  Google Scholar 

  • Parker DL, Stanley JH (1981) Glossary. In: Newton TH, Potts DG (eds) Radiology of the skull and brain: technical aspects of computed tomography. Mosby, New York

    Google Scholar 

  • Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nature Phys 2(4):258–261

    Google Scholar 

  • Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry EF, Brönnimann C, Grünzweig C, David C (2008) Hard-X-ray dark-field imaging using a grating interferometer. Nature Mater 7(2):134–137

    Google Scholar 

  • Pfeiffer F, Bech M, Bunk O, Donath T, Henrich B, Kraft P, David C (2009) X-ray dark-field and phase-contrast imaging using a grating interferometer. J Appl Phys 105(10):102006

    Article  Google Scholar 

  • Poludniovski G, Evans P, DeBlois F, Landry G, Verhaegen F, SpekCalc (2009) http://spekcalc.weebly.com/. Accessed 4 Apr 2016

  • Radon J (1917) Ãœber die Bestimmung von Funktionen durch Ihre Intergralwerte Längs Gewisser

    Google Scholar 

  • Riederer SJ, Pelc NJ, Chesler DA (1978) The noise power spectrum in computed X-ray tomography. Phys Med Biol 23(3):446

    Article  Google Scholar 

  • Requena G, Cloetens P, Altendorfer W, Poletti C, Tolnai D, Warchomicka F, Degischer HP (2009) Sub-micrometer synchrotron tomography of multiphase metals using Kirkpatrick—Baez Optics. Scripta Mater 61(7):760–763.

    Google Scholar 

  • Seeram E (2015) Computed tomography: physical principles, clinical applications, and quality control. Elsevier Health Sciences

    Google Scholar 

  • Smith BD (1985) Image reconstruction from cone-beam projections: necessary and sufficient conditions and reconstruction methods. IEEE Trans Med Imaging 4(1)

    Google Scholar 

  • Stark H, Woods WJ, Paul I, Hingorani R (1981) Direct Fourier reconstruction in computer tomography. IEEE Trans Acoust Speech Signal Process 29(2):237–245

    Google Scholar 

  • Stock SR (2008) Microcomputed tomography: methodology and applications. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Tesla Memorial Society of New York. http://www.teslasociety.com/pbust.htm. Accessed 5 Apr 2016

  • Tuy HK (1983) An inversion formula for cone-beam reconstruction. SIAM J Appl Math 43(3):546–552

    Article  Google Scholar 

  • Van Laere K, Koole M, Lemahieu I, Dierckx R (2001) Image filtering in single-photon emission computed tomography: principles and applications. Comput Med Imaging Graph 25(2):127–133

    Article  Google Scholar 

  • Wittke JH (2015) Signals. Northern Arizona University, Flagstaff, AZ. http://nau.edu/cefns/labs/electron-microprobe/glg-510-class-notes/signals/. Accessed on 29 April 2016

  • Zeng K, Chen Z, Zhang L, Wang G (2004) An error-reduction-based algorithm for cone-beam computed tomography. Med Phys 31(12):3206–3212

    Article  Google Scholar 

  • Ziegler A, Köhler T, Proksa R (2007) Noise and resolution in images reconstructed with FBP and OSC algorithms for CT. Med Phys 34(2):585–598

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Carmignato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hermanek, P., Rathore, J.S., Aloisi, V., Carmignato, S. (2018). Principles of X-ray Computed Tomography. In: Carmignato, S., Dewulf, W., Leach, R. (eds) Industrial X-Ray Computed Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-59573-3_2

Download citation

Publish with us

Policies and ethics