Skip to main content

Neutronic Feedback

  • Chapter
  • First Online:
The Physics of Nuclear Reactors
  • 2454 Accesses

Abstract

Understanding the effect on neutronics of the changing physical parameters of a pile is a key element in safety analysis. These effects are known as “neutron feedback” and have various and complex origins. In industrial reactors, a high moderator temperature is required either to vaporize water or to increase the thermal efficiency of the reactor. This high temperature implies significant fluctuations in the fuel temperature, which in turn affects cross sections via the Doppler effect. Furthermore, the moderator density also varies significantly, thereby influencing neutron slowing-down.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If the balance is carried out at equilibrium, the number of neutrons lost within an energy interval is given by: ∫Σ t (E) Φ(E) dE =  ∫ dE ∫ dE′ Σ s (E′ → E) Φ(E′) +  ∫  f (E) Φ(E) dE. Given that the resonance width is narrow compared to the mean energy loss per collision (NR hypothesis), the second term in the balance is almost constant. Thus, Φ(E) = cst/Σ t (E).

  2. 2.

    Lahoussine Erradi : Etude des effets de température dans les réseaux caractéristiques des réacteurs nucléaires de la filière à eau ordinaire [Study of the effects of temperature in characteristic networks of light-water nuclear reactors], PhD, Université d’Orsay (1982).

  3. 3.

    238 Pu = 2.10, 239 Pu = 54.50 %, 240 Pu = 25.00 %, 241 Pu = 9.30 %, 242 Pu = 6.40 %, 241 Am = 2.70 %, depleted uranium support 0.25%

  4. 4.

    Gérald Rimpault : Etude de l’effet en réactivité de vidange de sodium dans les expériences critiques à neutrons rapides, transposition aux réacteurs de puissance [Study of the effect on reactivity of sodium voiding in critical fast-neutron experiments, transposition to power reactors], PhD thesis, Université d’Aix-Marseille (1979).

  5. 5.

    Loïck Martin-Deidier : Mesure intégrale de la capture des produits de fission dans les réacteurs à neutrons rapides [Integral measurement of the capture cross-section of fission products in fast-neutron reactors], PhD thesis, Université d’Orsay (1979).

  6. 6.

    Philippe Coppe : Etude de la représentation des produits de fission dans les réacteurs de la filière à neutrons rapides [Study of the representation of fission products in fast-neutron reactors], PhD thesis, Université d’Orsay (1978). The weak absorption of fission products (the highest capture cross section in the SuperPhenix spectrum is for samarium 151 and is barely 4 barns!) must be compared to the high burn-up (100,000 MWd/ton) reached in fast reactors. In SuperPhenix, for a 300-day cycle, the weight of fission products is estimated at 2300 pcm, or 75% of the total loss in reactivity.

  7. 7.

    J.M. Fabre, Code Jason note de présentation [Presentation note for Jason code], Note EDF E-SE-PN-86-146-A (1986)

  8. 8.

    J.C. Lefebvre, R. Seban: Nouveau modèle de contre-réactions neutroniques appliqué au calcul des cœurs de réacteurs [A new model of neutronic feedback applied to reactor core calculations], Note EDF E-SE –TB 81-117 A, 1982.

  9. 9.

    Some authors, like R. D. Mosteller in Impact of moderator history on physics parameters in pressurized water reactors, Nuclear Science and Engineering, 98, pp. 149–153 (1988), use the term historical water temperature, defined in the same way as the historical density. Similarly, others use a historical boron concentration or a historical fuel temperature. The moderator density effect is predominant over the others.

Bibliography

  • Samuel Glasstone, Alexander Sesonske, Nuclear reactor engineering tome 1 et 2, Chapman-Hall, USA, ISBN 0-412-98521-7 et 0-412-98531-4, 1994, 841 pages in two parts, 4th edition. This reference is essential for reactor physics and was successfully edited several times. Glasstone published several work on the subject.

    Google Scholar 

  • Théo Kahan, M. Gauzit, Physique et calcul des réacteurs nucléaires [Reactor physics and calculations], Dunod, Paris, 1957, 388 pages. Several elements on the dimensioning of the French graphite-gas reactors. Indeed, since France relied more on those reactors at that time, there is no mention of PWR.

    Google Scholar 

  • Robert V. Meghreblian, David K. Holmes, Reactor analysis, McGraw-Hill, New-York, Library of Congress Catalog Card Number 59-15469, 1964, 807 pages. This work is entirely devoted to reactor physics and neutron physics and is within the framework of this textbook. No technology or operating details. One of the best references on the subject.

    Google Scholar 

  • D.R. Poulter (Editor), The design of gas-cooled graphite-moderated reactors, Oxford University Press, London, United Kingdom, 1963, 692 pages. The theoretical chapters are mostly relevant to our book: Steady-state reactor physics by B. Cutts and Reactor kinetic and control by F.W. Fenning.

    Google Scholar 

  • Paul Reuss, Précis de neutronique [Neutron physics], EDP Sciences, collection INSTN, Paris, ISBN 2-86883-637-2, 2003, essential elements from [Bussac and Reuss 1985], with a more modern typography but simplified content (directed towards students in a more didactic form). The only textbook of pure neutron physics still available in French.

    Google Scholar 

  • P. Silvennoinen, Reactor core fuel management, Pergamon Press, Oxford, United Kingdom, ISBN 0-08-019853-8, 1976, 257 pages. Curiously, this book hardly deals with fuel management.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marguet, S. (2017). Neutronic Feedback. In: The Physics of Nuclear Reactors. Springer, Cham. https://doi.org/10.1007/978-3-319-59560-3_16

Download citation

Publish with us

Policies and ethics