Skip to main content

World Trade Center Dust: Composition and Spatial-Temporal Considerations for Health

  • Chapter
  • First Online:
World Trade Center Pulmonary Diseases and Multi-Organ System Manifestations

Abstract

The events of 9/11 caused a unique health hazard by creating a large dust cloud and debris fires that burned for months. The combination of collapsed buildings and fires released many chemicals including a variety of carcinogens and the potential for pulmonary injury and inhalational exposure. Analyses of the spatial-temporal aspects of the dust cloud suggest very high levels of inhalation exposure to first responders and residents in lower Manhattan and western Brooklyn. Of particular, concern are asbestos, titanium, polycyclic aromatic hydrocarbons, dioxins, and chlordane pesticides. Beyond carcinogenicity and the potential for acute lung injury, many of the identified chemicals are implicated in cardiovascular disease. Furthermore, renal and hepatic damage may occur. Healthcare providers treating exposed persons should be aware of increased risk of contracting these sundry diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reibman J, Levy-carrick N, Miles T, et al. Destruction of the world trade center towers. lessons learned from an environmental health disaster. Ann Am Thorac Soc. 2016;13(5):577–83.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Environmental Protection Agency. Environmental news. whitman details ongoing agency efforts to monitor disaster sites, Contribute to Cleanup effort. Newsroom. EPA, 18 Sept 2001. Web.

    Google Scholar 

  3. Yiin L-M, Millette JR, Vette A, Ilacqua V, Quan C, Gorczynski J, Kendall M, Chen LC, Weisel CP, Buckley B, Yang I, Lioy PJ. Comparisons of the dust/smoke particulate that settled inside the surrounding buildings and outside on the streets of southern New York City after the collapse of the World Trade Center, September 11, 2001. J Air Waste Manage Assoc. 2004;54(5):515–28.

    Article  CAS  Google Scholar 

  4. Lioy PJ, Pellizzari E, Prezant D. The World Trade Center aftermath and its effects on health: understanding and learning through human-exposure science. Environ Sci Technol. 2006;40(22):6876–85.

    Article  CAS  PubMed  Google Scholar 

  5. Olson DA, Norris GA, Landis MS, Vette AF. Chemical characterization of ambient particulate matter near the World Trade Center: elemental carbon, organic carbon, and mass reconstruction. Environ Sci Technol. 2004;38(17):4465–73.

    Article  CAS  PubMed  Google Scholar 

  6. Lioy PJ, Weisel CP, Millette JR, et al. Characterization of the dust/smoke aerosol that settled east of the World Trade Center (WTC) in lower Manhattan after the collapse of the WTC 11 September 2001. Environ Health Perspect. 2002;110(7):703–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Centers for Disease Control and Prevention. WTC health program at a glance. 2015. Available from http://www.cdc.gov/wtc/ataglance/html. Accessed 20 June 2016.

  8. Farfel M, Digrande L, Brackbill R, et al. An overview of 9/11 experiences and respiratory and mental health conditions among World Trade Center Health Registry enrollees. J Urban Health. 2008;85(6):880–909.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hoven CW, Duarte CS, Lucas CP, et al. Psychopathology among New York city public school children 6 months after September 11. Arch Gen Psychiatry. 2005;62(5):545–52.

    Article  PubMed  Google Scholar 

  10. Mcgee JK, Chen LC, Cohen MD, et al. Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment. Environ Health Perspect. 2003;111(7):972–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. United States. Environmental Protection Agency. National Center for Environmental Assessment Office of Research and Development. Exposure and Human Health Evaluation of Airborne Pollution from the World Trade Center Disaster. N.p.: n.p.;2002.

    Google Scholar 

  12. Lorber M, Gibb H, Grant L, Pinto J, Pleil J, Cleverly D. Assessment of inhalation exposures and potential health risks to the general population that resulted from the collapse of the World Trade Center towers. Risk Anal. 2007a;27(5):1203–21.

    Article  PubMed  Google Scholar 

  13. Lorber M, Gibb H, Grant LD, Pinto JP, Pleil J, Cleverly D. Assessment of inhalation exposures and potential health risks to the general population that resulted from the collapse of the world trade center towers. Risk Anal. 2007b;27(5):1203–21.

    Article  PubMed  Google Scholar 

  14. Drummond G, Bevan R, Harrison P. A comparison of the results from intra-pleural and intra-peritoneal studies with those from inhalation and intratracheal tests for the assessment of pulmonary responses to inhalable dusts and fibres. Regul Toxicol Pharmacol. 2016;81:89–105.

    Article  CAS  PubMed  Google Scholar 

  15. Bhattacharjee P, Paul S, Bhattacharjee P. Risk of occupational exposure to asbestos, silicon and arsenic on pulmonary disorders: Understanding the genetic-epigenetic interplay and future prospects. Environ Res. 2016;147:425–34.

    Article  CAS  PubMed  Google Scholar 

  16. F Fluorides, Hydrogen Fluoride and Fluorine. Environmental health and medicine education. Agency for toxic substances and disease registry, n.d. Web.

    Google Scholar 

  17. Pham-huy LA, He H, Pham-huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4(2):89–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nitrate/Nitrite Toxicity. Environmental health and medicine education. Agency for Toxic Substances and Disease Registry, 05 Dec 2015. Web.

    Google Scholar 

  19. Scherpereel A. Asbestos and respiratory diseases. Presse Med. 2016;45(1):117–32.

    Article  PubMed  Google Scholar 

  20. Leigh J, Driscoll T. Malignant mesothelioma in Australia, 1945–2002. Int J Occup Environ Health. 2003;9(3):206–17.

    Article  PubMed  Google Scholar 

  21. Landrigan PJ, Lioy PJ, Thurston G, Gertrud B, Chen LC, Chillrud SN, Gavett SH, Georgopoulos PG, Geyh AS, Levin S, Perera F, Rappaport SM, Small C. Health and Environmental Consequences of the World Trade Center Disaster. Environ Health Perspect. 2004;112(6):731–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morimoto Y, Izumi H, Yoshiura Y, et al. Evaluation of pulmonary toxicity of zinc oxide nanoparticles following inhalation and intratracheal instillation. Int J Mol Sci. 2016;17(8):1241.

    Article  PubMed Central  Google Scholar 

  23. Lee SH, Wang TY, Hong JH, Cheng TJ, Lin CY. NMR-based metabolomics to determine acute inhalation effects of nano- and fine-sized ZnO particles in the rat lung. Nanotoxicology. 2016;10(7):924–34.

    Article  CAS  PubMed  Google Scholar 

  24. Szema AM, Schmidt MP, Lanzirotti A, Harrington AD, Lyubsky S, Reeder RJ, Schoonen MA. Titanium and iron in lung of a soldier with nonspecific interstitial pneumonitis and bronchiolitis after returning from Iraq. J Occup Environ Med. 2012;54(1):1–2.

    Article  PubMed  Google Scholar 

  25. Szema AM, Reeder RJ, Harrington AD, Schmidt M, Liu J, Golightly M, Rueb T, Hamidi SA. Iraq dust is respirable, sharp, and metal-laden and induces lung inflammation with fibrosis in mice via IL-2 upregulation and depletion of regulatory T Cells. J Occup Environ Med. 2014;56(3):243–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lioy PJ, Yiin LM, Adgate J, Weisel C, Rhoads GG. The effectiveness of a home cleaning intervention strategy in reducing potential dust and lead exposures. J Expo Anal Environ Epidemiol. 1998;8(1):17–35.

    CAS  PubMed  Google Scholar 

  27. Rowbotham AL, Levy LS. Chromium in the environment: an evaluation of exposure of the UK general population and possible adverse health effects. J Toxicol Environ Health B Crit Rev. 2000;3(3):145–78.

    Article  CAS  PubMed  Google Scholar 

  28. Chiou HY, Huang WI, Su CL, Chang SF, Hsu YH, Chen CJ. Dose-response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic. Stroke. 1997;28(9):1717–23.

    Article  CAS  PubMed  Google Scholar 

  29. Hendryx M. Mortality from heart, respiratory, and kidney disease in coal mining areas of Appalachia. Int Arch Occup Environ Health. 2009;82(2):243–9.

    Article  PubMed  Google Scholar 

  30. Tseng CH, Chong CK, Tseng CP, et al. Long-term arsenic exposure and ischemic heart disease in arseniasis-hyperendemic villages in Taiwan. Toxicol Lett. 2003;137(1-2):15–21.

    Article  CAS  PubMed  Google Scholar 

  31. Maret W, Moulis JM. The bioinorganic chemistry of cadmium in the context of its toxicity. Met Ions Life Sci. 2013;11:1–29.

    Article  CAS  PubMed  Google Scholar 

  32. Safety and Health Topics Cadmium. Case studies in environmental medicine. United States Department of Labor Occupational Safety and Health Administration, n.d. Web.

    Google Scholar 

  33. Cadmium Toxicity. Environmental health and medicine education. Agency for Toxic Substances & Disease Registry, 05 Dec 2015. Web.

    Google Scholar 

  34. Peters S, Reid A, Fritschi L, De klerk N, Musk AW. Long-term effects of aluminium dust inhalation. Occup Environ Med. 2013;70(12):864–8.

    Article  PubMed  Google Scholar 

  35. Saputra D, Chang J, Lee BJ, Yoon JH, Kim J, Lee K. Short-term manganese inhalation decreases brain dopamine transporter levels without disrupting motor skills in rats. J Toxicol Sci. 2016;41(3):391–402.

    Article  CAS  PubMed  Google Scholar 

  36. Delisle A, Ferraris E, Plante I. Chronic exposure to hexachlorobenzene results in down-regulation of connexin43 in the breast. Environ Res. 2015;143(Pt A):229–40.

    Article  CAS  PubMed  Google Scholar 

  37. Chalouati H, Gamet-payrastre L, Saad MB. Irreversible thyroid disruption induced after subchronic exposure to hexachlorobenzene in male rats. Toxicol Ind Health. 2016;32(5):822–31.

    Article  CAS  PubMed  Google Scholar 

  38. Chalouati H, Boutet E, Metais B, Fouche E, Ben sâad MM, Gamet-payrastre L. DNA damage and oxidative stress induced at low doses by the fungicide hexachlorobenzene in human intestinal Caco-2 cells. Toxicol Mech Methods. 2015;25(6):448–58.

    CAS  PubMed  Google Scholar 

  39. Puertas R, Lopez-espinosa MJ, Cruz F, et al. Prenatal exposure to mirex impairs neurodevelopment at age of 4 years. Neurotoxicology. 2010;31(1):154–60.

    Article  CAS  PubMed  Google Scholar 

  40. Waliszewski SM, Melo-santiesteban G, Villalobos-pietrini R, et al. Breast milk excretion Kinetic of b-HCH, pp'DDE and pp'DDT. Bull Environ Contam Toxicol. 2009;83(6):869–73.

    Article  CAS  PubMed  Google Scholar 

  41. Wnuk A, Rzemieniec J, Litwa E, Lasoń W, Krzeptowski W, Wójtowicz AK, Kajta M. The crucial involvement of Retinoid X receptors in DDE neurotoxicity. Neurotox Res. 2016;29(1):155–72.

    Article  CAS  PubMed  Google Scholar 

  42. Cartier C, Muckle G, Jacobson SW, et al. Prenatal and 5-year p,p'-DDE exposures are associated with altered sensory processing in school-aged children in Nunavik: a visual evoked potential study. Neurotoxicology. 2014;44:8–16.

    Article  CAS  PubMed  Google Scholar 

  43. Quan C, Shi Y, Wang C, Wang C, Yang K. p,p'-DDE damages spermatogenesis via phospholipid hydroperoxide glutathione peroxidase depletion and mitochondria apoptosis pathway. Environ Toxicol. 2016;31(5):593–600.

    CAS  PubMed  Google Scholar 

  44. Rodríguez-Alcalá LM, Sá C, Pimentel LL, Pestana D, Teixeira D, Faria A, Calhau C, Gomes A. Endocrine disruptor DDE Associated with a high-fat diet enhances the impairment of liver fatty acid composition in rats. J Agric Food Chem. 2015;63(42):9341–8.

    Article  PubMed  Google Scholar 

  45. Offenberg JH, Eisenreich SJ, Gigliotti CL, et al. Persistent organic pollutants in dusts that settled indoors in lower Manhattan after September 11, 2001. J Expo Anal Environ Epidemiol. 2004;14(2):164–72.

    Article  CAS  PubMed  Google Scholar 

  46. Boström CE, Gerde P, Hanberg A, et al. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect. 2002;110(Suppl 3):451–88.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Toxicity of Polycyclic Aromatic Hydrocarbons. Case studies in environmental medicine. Agency for Toxic Substances and Disease Registry, 01 July 2009. Web.

    Google Scholar 

  48. Butt CM, Diamond ML, Truong J, Ikonomou MG, Helm PA, Stern GA. Semivolatile organic compounds in window films from lower Manhattan after the September 11th World Trade Center attacks. Environ Sci Technol. 2004;38(13):3514–24.

    Article  CAS  PubMed  Google Scholar 

  49. Albert O, Jégou B. A critical assessment of the endocrine susceptibility of the human testis to phthalates from fetal life to adulthood. Hum Reprod Update. 2014;20(2):231–49.

    Article  CAS  PubMed  Google Scholar 

  50. López-carrillo L, Hernández-ramírez RU, Calafat AM, et al. Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect. 2010;118(4):539–44.

    Article  PubMed  Google Scholar 

  51. National Research Council (US) Committee on the Health Risks of Phthalates. Phthalates and cumulative risk assessment, the task ahead. Washington, DC: National Academies Press; 2008.

    Google Scholar 

  52. Hou JW, Lin CL, Tsai YA, et al. The effects of phthalate and nonylphenol exposure on body size and secondary sexual characteristics during puberty. Int J Hyg Environ Health. 2015;218(7):603–15.

    Article  CAS  PubMed  Google Scholar 

  53. Batterman S, Chin JY, Jia C, et al. Sources, concentrations, and risks of naphthalene in indoor and outdoor air. Indoor Air. 2012;22(4):266–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Murata Y, Emi Y, Denda A, Konishi Y. Ultrastructural analysis of pulmonary alveolar proteinosis induced by methylnaphthalene in mice. Exp Toxicol Pathol. 1992;44(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  55. Han C, Liu L, Du S, et al. Investigation of rare chronic lipoid pneumonia associated with occupational exposure to paraffin aerosol. J Occup Health. 2016;58(5):482–8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tagiyeva N, Sheikh A. Domestic exposure to volatile organic compounds in relation to asthma and allergy in children and adults. Expert Rev Clin Immunol. 2014;10(12):1611–39.

    Article  CAS  PubMed  Google Scholar 

  57. Loh MM, Levy JI, Spengler JD, Houseman EA, Bennett DH. Ranking cancer risks of organic hazardous air pollutants in the United States. Environ Health Perspect. 2007;115(8):1160–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nurmatov UB, Tagiyeva N, Semple S, Devereux G, Sheikh A. Volatile organic compounds and risk of asthma and allergy: a systematic review. Eur Respir Rev. 2015;24(135):92–101.

    Article  PubMed  Google Scholar 

  59. Arisawa K, Takeda H, Mikasa H. Background exposure to PCDDs/PCDFs/PCBs and its potential health effects: a review of epidemiologic studies. J Med Investig. 2005;52(1-2):10–21.

    Article  Google Scholar 

  60. Pavuk M, Schecter AJ, Akhtar FZ, Michalek JE. Serum 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) levels and thyroid function in Air Force veterans of the Vietnam War. Ann Epidemiol. 2003;13(5):335–43.

    Article  PubMed  Google Scholar 

  61. Pelclová D, Urban P, Preiss J, et al. Adverse health effects in humans exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Rev Environ Health. 2006;21(2):119–38.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Kostrubiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kostrubiak, M. (2018). World Trade Center Dust: Composition and Spatial-Temporal Considerations for Health. In: Szema, A. (eds) World Trade Center Pulmonary Diseases and Multi-Organ System Manifestations. Springer, Cham. https://doi.org/10.1007/978-3-319-59372-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59372-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59371-5

  • Online ISBN: 978-3-319-59372-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics