Skip to main content

How the Prior Information Shapes Neural Networks for Optimal Multisensory Integration

  • Conference paper
  • First Online:
Advances in Neural Networks - ISNN 2017 (ISNN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10262))

Included in the following conference series:

Abstract

Extensive studies suggest that the brain integrates multisensory signals in a Bayesian optimal way. In this work, we consider how the couplings in a neural network model are shaped by the prior information when it performs optimal multisensory integration and encodes the whole profile of the posterior. To process stimuli of two modalities, a biologically plausible neural network model consists of two modules, one for each modality, and crosstalks between the two modules are carried out through feedforward cross-links and reciprocal connections. We found that the reciprocal couplings are crucial to optimal multisensory integration in that their pattern is shaped by the correlation in the joint prior distribution of sensory stimuli. Our results show that a decentralized architecture based on reciprocal connections is able to accommodate complex correlation structures across modalities and utilize this prior information in optimal multisensory integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alais, D., Burr, D.: No direction-specific bimodal facilitation for audiovisual motion detection. Cogn. Brain Res. 19(2), 185–194 (2004)

    Article  Google Scholar 

  2. Ernst, M.O., Banks, M.S.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870), 429–433 (2002)

    Article  Google Scholar 

  3. Gu, Y., Angelaki, D.E., DeAngelis, G.C.: Neural correlates of multisensory cue integration in macaque MSTd. Nat. Neurosci. 11(10), 1201–1210 (2008)

    Article  Google Scholar 

  4. Girshick, A.R., Landy, M.S., Simoncelli, E.P.: Cardinal rules: visual orientation perception reflects knowledge of environmental statistics. Nat. Neurosci. 14(7), 926–932 (2011)

    Article  Google Scholar 

  5. Fischer, B.J., Peña, J.L.: Owl’s behavior and neural representation predicted by Bayesian inference. Nat. Neurosci. 14(8), 1061–1066 (2011)

    Article  Google Scholar 

  6. Körding, K.P., Wolpert, D.M.: Bayesian integration in sensorimotor learning. Nature 427(6971), 244–247 (2004)

    Article  Google Scholar 

  7. Ghazanfar, A.A., Schroeder, C.E.: Is neocortex essentially multisensory? Trends Cogn. Sci. 10(6), 278–285 (2006)

    Article  Google Scholar 

  8. Sato, Y., Toyoizumi, T., Aihara, K.: Bayesian inference explains perception of unity and ventriloquism aftereffect: identification of common sources of audiovisual stimuli. Neural Comput. 19(12), 3335–3355 (2007)

    Article  MATH  Google Scholar 

  9. Shams, L., Ma, W.J., Beierholm, U.: Sound-induced flash illusion as an optimal percept. NeuroReport 16(17), 1923–1927 (2005)

    Article  Google Scholar 

  10. Shams, L., Beierholm, U.R.: Causal inference in perception. Trends Cogn. Sci. 14(9), 425–432 (2010)

    Article  Google Scholar 

  11. Durante, F., Sempi, C.: Principles of Copula Theory. Taylor & Francis, Boca Raton (2015)

    Book  MATH  Google Scholar 

  12. Sklar, A.: Random variables, joint distribution functions, and copulas. Kybernetika 9(6), 449–460 (1973)

    MathSciNet  MATH  Google Scholar 

  13. Körding, K.P., Beierholm, U., Ma, W.J., Quartz, S., Tenenbaum, J.B., Shams, L.: Causal inference in multisensory perception. PLoS One 2(9), e943 (2007)

    Article  Google Scholar 

  14. Zhang, W.H., Chen, A., Rasch, M.J., Wu, S.: Decentralized multisensory information integration in neural systems. J. Neurosci. 36(2), 532–547 (2016)

    Article  Google Scholar 

  15. Magosso, E., Cuppini, C., Ursino, M.: A neural network model of ventriloquism effect and aftereffect. PLoS One 7(8), e42503 (2012)

    Article  Google Scholar 

  16. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27(2), 77–87 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ohshiro, T., Angelaki, D.E., DeAngelis, G.C.: A normalization model of multisensory integration. Nat. Neurosci. 14(6), 775–782 (2011)

    Article  Google Scholar 

  18. Carandini, M., Heeger, D.J.: Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13(1), 51–62 (2012)

    Article  Google Scholar 

  19. Van Atteveldt, N., Murray, M.M., Thut, G., Schroeder, C.E.: Multisensory integration: flexible use of general operations. Neuron 81(6), 1240–1253 (2014)

    Article  Google Scholar 

  20. Fung, C.C.A., Wong, K.Y.M., Wu, S.: A moving bump in a continuous manifold: a comprehensive study of the tracking dynamics of continuous attractor neural networks. Neural Comput. 22(3), 752–792 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Williams, R.J., Zipser, D.: Gradient-based learning algorithms for recurrent networks and their computational complexity. In: Back-Propagation: Theory, Architectures and Applications, pp. 433–486 (1995)

    Google Scholar 

  22. Seung, H.S.: Learning continuous attractors in recurrent networks. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems 10, pp. 654–660. MIT Press, Cambridge (1998)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Research Grants Council of Hong Kong (N_HKUST606/12, 605813 and 16322616) and National Basic Research Program of China (2014CB846101) and the Natural Science Foundation of China (31261160495).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, H., Zhang, WH., Wong, K.Y.M., Wu, S. (2017). How the Prior Information Shapes Neural Networks for Optimal Multisensory Integration. In: Cong, F., Leung, A., Wei, Q. (eds) Advances in Neural Networks - ISNN 2017. ISNN 2017. Lecture Notes in Computer Science(), vol 10262. Springer, Cham. https://doi.org/10.1007/978-3-319-59081-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59081-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59080-6

  • Online ISBN: 978-3-319-59081-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics