Skip to main content

Abstract

Cord blood (CB) banking is a worldwide resource that primarily supports hematopoietic progenitor cell (HPC) transplantation. Increasingly, CB is used as a source of HPCs, other neonatal cell types, and proteins for biomedical research and new therapies, such as ophthalmological tissue regeneration and platelet lysates for tissue culture. This chapter will review the methods used to prepare a volume-reduced HPC-enriched fraction from the blood collected at birth, from the placenta and umbilical cord of neonates, as well as the methods for its cryopreservation and storage under cryogenic conditions. Initially, a manual procedure allowed the centrifugal separation of a buffy-coat fraction that was cryopreserved with dimethyl sulfoxide (DMSO) and frozen under controlled rate, with aliquots of the product being separated into unattached freezing vials, for use as future test samples. Subsequently, automated methods for withdrawing the buffy coat have been introduced that allow for aliquots of the cord blood unit (CBU) to be segregated into sealed “segments” of its integral plastic tubing, enabling monitoring the identity, viability, and potency of the CBU, including testing at the time of use. The stability of the CBUs and their segments after many years of storage has been established, as well as their safety and effectiveness. Food and Drug Administration (FDA) has determined that the CBUs produced according to established norms are safe and effective and has issued licenses to CBUs produced by a growing number of cord blood banks (CBBs). CBUs that do not meet the required thresholds for use in HPC transplantation are currently either used clinically if met with other criteria or for research in the generation of tissues and cells for regenerative medicine and immunotherapy. However, challenges, including costs and declining CBU utilization, may interfere with the expanding potential for CB clinical and research applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ademokun JA, Chapman C, Dunn J, Lander D, Mair K, Proctor SJ et al (1997) Umbilical cord blood collection and separation for haematopoietic progenitor cell banking. Bone Marrow Transplant 19:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Armitage S, Fehily D, Dickinson A, Chapman C, Navarrete C, Contreras M (1999) Cord blood banking: volume reduction of cord blood units using a semi-automated closed system. Bone Marrow Transplant 23:505–509

    Article  CAS  PubMed  Google Scholar 

  • Astori G, Amati E, Bambi F, Bernardi M, Chieregato K, Schäfer R, Sella S, Rodeghiero F (2016) Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Res Ther 7(1):93

    Article  PubMed  PubMed Central  Google Scholar 

  • Basford C, Forraz N, Habibollah S, Hanger K, McGuckin C (2010) The cord blood separation league table: a comparison of the major clinical grade harvesting techniques for cord blood stem cells. Int J Stem Cells 3:32–45

    Article  PubMed  PubMed Central  Google Scholar 

  • Bieback K (2013) Platelet lysate as replacement for fetal bovine serum in mesenchymal stromal cell cultures. Transfus Med Hemother 40(5):326–335

    Article  PubMed  PubMed Central  Google Scholar 

  • Dal Cortivo L, Robert I, Mangin C, Sameshima T, Kora S, Gluckman E et al (2000) Cord blood banking: volume reduction using ‘Procord’ Terumo filter. J Hematother Stem Cell Res 9:885–890

    Article  CAS  PubMed  Google Scholar 

  • Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, Bernstein ID (2010) Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med 16(2):232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrila L, Shanlong J, Chapman J, Marr D, Kryston K, Rubinstein P (2006) ThermoGenesis AXP AutoXpress platform and Bioarchive system for automated cord blood banking [abstract]. Poster presented at the EBMT/ASBMT tandem meeting, 16–20 Feb 2006; Honolulu, HI

    Google Scholar 

  • Dobrila L, Zhu T, Zamfir D, Wang T, Tarnawski MJ, Ciubotariu R et al (2014) Increasing post-processing total nucleated cell (TNC) recovery in cord blood banking: Hespan addition in cGMP environment. Blood 124:1126

    Google Scholar 

  • Eichler H, Kern S, Beck C, Ziegler W, Kluter H (2003) Engraftment capacity of umbilical cord blood cells processed by either whole blood preparation or filtration. Stem Cells 21:208–216

    Article  PubMed  Google Scholar 

  • Ende M, Ende N (1972) Hematopoietic transplantation by means of fetal (cord) blood: a new method. Va Med Mon 99:276–280

    CAS  PubMed  Google Scholar 

  • Gluckman E, Broxmeyer HE, Auerbach AD, Friedman H, Douglas GW, DeVergie A et al (1989) Hematopoietic reconstitution in a patient with Fanconi anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321:1174–1178

    Article  CAS  PubMed  Google Scholar 

  • Halbrecht J (1939) Transfusion with placental blood. Lancet I:202–204

    Article  Google Scholar 

  • Horwitz ME, Chao NJ, Rizzieri DA, Long GD, Sullivan KM, Gasparetto C et al (2014) Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J Clin Invest 124(7):3121–3128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivolgin DA, Smolyaninov AB (2014) Isolation of nucleated cells fraction from umbilical cord blood—choice of method. Cell Organ Transplantol 2(1):30–33

    Google Scholar 

  • Knudtzon S (1974) In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood 43:357–361

    CAS  PubMed  Google Scholar 

  • Koike K (1983) Cryopreservation of pluripotent and committed hematopoietic progenitor cells from human bone marrow and cord blood. Acta Paediatr Jpn 25:275–283

    Article  Google Scholar 

  • Kumar V, Perea J, Zhu T, Zamfir D, Dobrila L, Rubinstein P (2014) Processing and cryopreserving cord blood units using the SynGenX™-1000 Platform [abstract]. Poster presented at: the cord blood forum conference, 5–7 June 2014; San Francisco, CA

    Google Scholar 

  • Kurtzberg J, Graham M, Casey J, Olson J, Stevens CE, Rubinstein P (1994) The use of umbilical cord blood in mismatched related and unrelated hematopoietic stem cell transplantation. Blood Cells 20:275–283

    CAS  PubMed  Google Scholar 

  • Lapierre V, Pellegrini N, Bardey I, Malugani C, Saas P, Garnache F et al (2007) Cord blood volume reduction using an automated system (Sepax) vs a semi-automated system (Optipress II) and a manual method (hydroxyethyl starch sedimentation) for routine cord blood banking: a comparative study. Cytotherapy 9:165–169

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhu H, Nguyen M, Emmanuel P, Baker B, Marr D, et al. (2007) Validation study of mononuclear cell recovery using the AXP AutoXpress platform [abstract]. Poster presented at: the EBMT meeting, 24–28 March 2007; Lyon, France

    Google Scholar 

  • de Lima M, McNiece I, Robinson SN, Munsell M, Eapen M, Horowitz M et al (2012) Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med 367(24):2305–2315

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowe P, Fickling A (2015) An evaluation of the SynGenXTM processing and freezing system for implementation at Anthony Nolan Cell Therapy Centre [abstract]. Poster presented at the British Society for Gene and Cell Therapy annual conference, 9–11 June 2015; Glasgow, UK

    Google Scholar 

  • Meyer-Monard S, Tichelli A, Troeger C, Arber C, Nicoloso De Faveri G, Gratwohl A et al (2012) Initial cord blood unit volume affects mononuclear cell and CD34+ cell-processing efficiency in a non-linear fashion. Cytotherapy 14:215–222

    Article  CAS  PubMed  Google Scholar 

  • M-Reboredo N, Diaz A, Castro A, Villaescusa RG (2000) Collection, processing and cryopreservation of umbilical cord blood for unrelated transplantation. Bone Marrow Transplant 26:1263–1270

    Article  CAS  PubMed  Google Scholar 

  • Naing MW, Gibson D, Hourd P, Gomez S, Horton RBV, Segal J et al (2015) Improving umbilical cord blood processing to increase total nucleated cell count yield and reduce cord input wastage by managing the consequences of input variation. Cytotherapy 17:58–67

    Article  PubMed  Google Scholar 

  • Nakahata T, Ogawa M (1982) Hematopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hematopoietic progenitors. J Clin Invest 80:1324–1328

    Article  Google Scholar 

  • Parazzi V, Lazzari L, Rebulla P (2010) Platelet gel from cord blood: a novel tool for tissue engineering. Platelets 21(7):549–554

    Article  CAS  PubMed  Google Scholar 

  • Popat U, Mehta RS, Rezvani K, Fox P, Kondo K, Marin D et al (2015) Enforced fucosylation of cord blood hematopoietic cells accelerates neutrophil and platelet engraftment after transplantation. Blood 125(19):2885–2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regan D, Wofford J, Fortune K, Henderson C, Akel S (2011) Clinical evaluation of an alternative cord blood processing method [abstract]. Poster presented at the AABB meeting, 22–25 October 2011; San Diego, CA

    Google Scholar 

  • Rodriguez L, Azqueta C, Azzalin S, Garcia J, Querol S (2004) Washing of cord blood grafts after thawing: high cell recovery using an automated and closed system. Vox Sang 87(3):165–172

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein P (1993) Placental blood-derived hematopoietic stem cells for unrelated bone marrow reconstitution. J Hematother 2:207–210

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein P (2009) Cord blood banking for clinical transplantation. Bone Marrow Transplant 44:635–642

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein P, Rosenfield RE, Adamson JW, Stevens CE (1993) Stored placental blood for unrelated bone marrow reconstitution. Blood 81:1679–1690

    CAS  PubMed  Google Scholar 

  • Rubinstein P, Taylor PE, Scaradavou A, Adamson JW, Migliaccio G, Emanuel D et al (1994) Unrelated placental blood for bone marrow reconstitution: organization of the placental blood program. Blood Cells 20:587–600

    CAS  PubMed  Google Scholar 

  • Rubinstein P, Dobrila L, Rosenfield RE, Adamson JW, Migliaccio G, Migliaccio AR et al (1995) Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci U S A 92:10119–10122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato N, Fricke C, McGuckin C, Forraz N, Degoul O, Atzeni G et al (2015) Cord blood processing by a novel filtration system. Cell Prolif 48(6):671–681. https://doi.org/10.1111/cpr. 12217

    Article  CAS  PubMed  Google Scholar 

  • Shima T, Forraz N, Sato N, Yamauchi T, Iwasaki H, Takenaka K et al (2013) A novel filtration method for cord blood processing using a polyester fabric filter. Int J Lab Hematol 35:436–446

    Article  CAS  PubMed  Google Scholar 

  • Solves P, Planelles D, Mirabet V, Blanquer A, Carbonell-Uberos F (2013) Qualitative and quantitative cell recovery in umbilical cord blood processed by two automated devices in routine cord blood banking: a comparative study. Blood Transfus 11:405–411

    PubMed  PubMed Central  Google Scholar 

  • Takahashi TA, Rebulla P, Armitage S, van Beckhoven J, Eichler H, Kekomäki R et al (2006) Multi-laboratory evaluation of procedures for reducing the volume of cord blood: influence on cell recoveries. Cytotherapy 8(3):254–264

    Article  CAS  PubMed  Google Scholar 

  • Tokushima Y, Sasayama N, Takahashi TA (2001) Repopulating activities of human cord blood cells separated by a stem cell collection filter in NOD/SCID mice: a comparative study of filtration method and HES method. Transfusion 41:1014–1019

    Article  CAS  PubMed  Google Scholar 

  • Versura P, Profazio V, Buzzi M, Stancari A, Arpinati M, Malavolta N et al (2013) Efficacy of standardized and quality-controlled cord blood serum eye drop therapy in the healing of severe corneal epithelial damage in dry eye. Cornea 32(4):412–418

    Article  PubMed  Google Scholar 

  • Yasutake M, Sumita M, Terashima S, Tokushima Y, Nitadori Y, Takahashi TA (2001) Stem cell collection filter system for human placental/umbilical cord blood processing. Vox Sang 80:101–105

    Article  CAS  PubMed  Google Scholar 

  • Zingsem J, Strasser E, Weisbach V, Zimmermann R, Ringwald J, Goecke T et al (2003) Cord blood processing with an automated and functionally closed system. Transfusion 43:806–813

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludy Dobrila Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Dobrila, L. (2018). Cord Blood Processing: Different Bags and Automation. In: Schwartz, J., Shaz, B. (eds) Best Practices in Processing and Storage for Hematopoietic Cell Transplantation . Advances and Controversies in Hematopoietic Transplantation and Cell Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-58949-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58949-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58948-0

  • Online ISBN: 978-3-319-58949-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics