Skip to main content

Peripheral Blood Hematopoietic Progenitor Cell Graft Thawing

  • Chapter
  • First Online:
Best Practices in Processing and Storage for Hematopoietic Cell Transplantation

Abstract

Hematopoietic cell transplants (HCTs) have been performed for decades, and the number of both autologous and allogeneic transplants is constantly increasing. Mobilized peripheral blood (PB) hematopoietic progenitor cells (HPCs) are the most common cell source for adult patients, replacing almost completely the traditional bone marrow (BM) graft. Cryopreservation of PB HPC graft allows collecting and storing the product for later use. Cryopreservation is an essential practice for autologous products but can also be helpful for allogeneic one. The cryopreservation process itself can decrease cell viability and potency, and some of the reagents that are used to protect cells during cryopreservation can have toxic effects at thaw. Maintaining functional and viable HPCs is fundamental for HCT success. Thawing approaches of cryopreserved PB HPC should either minimize cell exposure time to toxic elements or include measures to rapidly remove them after thawing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • AABB AAoTB, American Red Cross, American Society for Blood and Marrow, Transplantation ASfA, America’s Blood Centers, College of American Pathologists, Cord Blood Association, Foundation for the Accreditation of, Cellular Therapy I, International NetCord Foundation, International Society for Cellular Therapy, JACIE Accreditation Office, Program NMD (2016) Circular of information for the use of cellular therapy products. Bethesda, MD, AABB

    Google Scholar 

  • Akkök CA, Holte MR, Tangen JM, Ostenstad B, Bruserud O (2009) Hematopoietic engraftment of dimethyl sulfoxide-depleted autologous peripheral blood progenitor cells. Transfusion 49(2):354–361

    Article  PubMed  Google Scholar 

  • Alessandrino P, Bernasconi P, Caldera D et al (1999) Adverse events occurring during bone marrow or peripheral blood progenitor cell infusion: analysis of 126 cases. Bone Marrow Transplant 23(6):533–537

    Article  CAS  PubMed  Google Scholar 

  • Anchordoguy TJ, Carpenter JF, Crowe JH, Crowe LM (1992) Temperature-dependent perturbation of phospholipid bilayers by dimethylsulfoxide. Biochim Biophys Acta 1104(1):117–122

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T, Carpenter JF, Kita YA, Crowe JH (1990) The basis for toxicity of certain cryoprotectants: a hypothesis. Cryobiology 27:401–415

    Article  CAS  Google Scholar 

  • Bakken AM, Bruserud O, Abrahamsen JF (2003) No differences in colony formation of peripheral blood stem cells frozen with 5% or 10% dimethyl sulfoxide. J Hematother Stem Cell Res 12(3):351–358

    Article  CAS  PubMed  Google Scholar 

  • Baust JG, Gao D, Baust JM (2009) Cryopreservation: an emerging paradigm change. Organogenesis 5(3):90–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Benekli M, Anderson B, Wentling D, Bernstein S, Czuczman M, McCarthy P (2000) Severe respiratory depression after dimethylsulphoxide-containing autologous stem cell infusion in a patient with AL amyloidosis. Bone Marrow Transplant 25(12):1299–1301

    Article  CAS  PubMed  Google Scholar 

  • Bothner U, Georgieff M, Vogt NH (1998) Assessment of the safety and tolerance of 6% hydroxyethyl starch (200/0.5) solution: a randomized, controlled epidemiology study. Anesth Analg 86(4):850–855

    Article  CAS  PubMed  Google Scholar 

  • Bowman CA, Yu M, Cottler-Fox M (1996) Evaluation of methods for preparing and thawing cryopreserved CD34+ and CD34− cell lines for use as reagents in flow cytometry of hematopoietic progenitor cells. Transfusion 36(11-12):985–988

    Article  CAS  PubMed  Google Scholar 

  • Brave M, Farrell A, Ching Lin S et al (2010) FDA review summary: Mozobil in combination with granulocyte colony-stimulating factor to mobilize hematopoietic stem cells to the peripheral blood for collection and subsequent autologous transplantation. Oncology 78(3-4):282–288

    Article  CAS  PubMed  Google Scholar 

  • Broxmeyer HE, Srour EF, Hangoc G, Cooper S, Anderson SA, Bodine DM (2003) High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years. Proc Natl Acad Sci U S A 100(2):645–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calmels B, Houzé P, Hengesse JC, Ducrot T, Malenfant C, Chabannon C (2003) Preclinical evaluation of an automated closed fluid management device: Cytomate, for washing out DMSO from hematopoietic stem cell grafts after thawing. Bone Marrow Transplant 31(9):823–828

    Article  CAS  PubMed  Google Scholar 

  • Cordoba R, Arrieta R, Kerguelen A, Hernandez-Navarro F (2007) The occurrence of adverse events during the infusion of autologous peripheral blood stem cells is related to the number of granulocytes in the leukapheresis product. Bone Marrow Transplant 40(11):1063–1067

    Article  CAS  PubMed  Google Scholar 

  • Davis JM, Rowley SD, Braine HG, Piantadosi S, Santos GW (1990) Clinical toxicity of cryopreserved bone marrow graft infusion. Blood 75(3):781–786

    CAS  PubMed  Google Scholar 

  • Dhodapkar M, Goldberg SL, Tefferi A, Gertz MA (1994) Reversible encephalopathy after cryopreserved peripheral blood stem cell infusion. Am J Hematol 45(2):187–188

    Article  CAS  PubMed  Google Scholar 

  • Donnenberg AD, Koch EK, Griffin DL et al (2002) Viability of cryopreserved BM progenitor cells stored for more than a decade. Cytotherapy 4(2):157–163

    Article  CAS  PubMed  Google Scholar 

  • Fahy GM (1986) The relevance of cryoprotectant “toxicity” to cryobiology. Cryobiology 23(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Foïs E, Desmartin M, Benhamida S et al (2007) Recovery, viability and clinical toxicity of thawed and washed haematopoietic progenitor cells: analysis of 952 autologous peripheral blood stem cell transplantations. Bone Marrow Transplant 40(9):831–835

    Article  PubMed  Google Scholar 

  • Hoyt R, Szer J, Grigg A (2000) Neurological events associated with the infusion of cryopreserved bone marrow and/or peripheral blood progenitor cells. Bone Marrow Transplant 25(12):1285–1287

    Article  CAS  PubMed  Google Scholar 

  • Kao GS (2009) Assessment of collection quality. In: Areman EM, Loper K (eds) Cellular therapy: principles, methods, and regulations. AABB, Bethesda, MD, pp 291–302

    Google Scholar 

  • Keating GM (2011) Plerixafor: a review of its use in stem-cell mobilization in patients with lymphoma or multiple myeloma. Drugs 71(12):1623–1647

    Article  CAS  PubMed  Google Scholar 

  • Kessinger A, Schmit-Pokorny K, Smith D, Armitage J (1990) Cryopreservation and infusion of autologous peripheral blood stem cells. Bone Marrow Transplant 5(Suppl 1):25–27

    PubMed  Google Scholar 

  • Khera N, Jinneman J, Storer BE et al (2012) Limiting the daily total nucleated cell dose of cryopreserved peripheral blood stem cell products for autologous transplantation improves infusion-related safety with no adverse impact on hematopoietic engraftment. Biol Blood Marrow Transplant 18(2):220–228

    Article  PubMed  Google Scholar 

  • Lemarie C, Calmels B, Malenfant C et al (2005) Clinical experience with the delivery of thawed and washed autologous blood cells, with an automated closed fluid management device: CytoMate. Transfusion 45(5):737–742

    Article  PubMed  Google Scholar 

  • López-Jiménez J, Cerveró C, Muñoz A et al (1994) Cardiovascular toxicities related to the infusion of cryopreserved grafts: results of a controlled study. Bone Marrow Transplant 13(6):789–793

    PubMed  Google Scholar 

  • Lovelock JE, Bishop MW (1959) Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 183(4672):1394–1395

    Article  CAS  PubMed  Google Scholar 

  • Mazur P (2004) Principles of cryobiology. In: Fuller BJ, Lane N, Benson E (eds) Life in the frozen state. CRC, Boca Raton, FL, pp 3–66

    Chapter  Google Scholar 

  • Mazur P, Leibo SP, Chu EH (1972) A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. Exp Cell Res 71(2):345–355

    Article  CAS  PubMed  Google Scholar 

  • Pagano MB, Harmon C, Cooling L et al (2016) Use of hydroxyethyl starch in leukocytapheresis procedures does not increase renal toxicity. Transfusion 56(11):2848–2856

    Article  CAS  PubMed  Google Scholar 

  • Pasquini M, Zhu X (2015) Current uses and outcomes of hematopoietic stem cell transplantation: CIBMTR summary slides. http://www.cibmtr.org

  • Perotti CG, Del Fante C, Viarengo G et al (2004) A new automated cell washer device for thawed cord blood units. Transfusion 44(6):900–906

    Article  PubMed  Google Scholar 

  • Rapoport AP, Rowe JM, Packman CH, Ginsberg SJ (1991) Cardiac arrest after autologous marrow infusion. Bone Marrow Transplant 7(5):401–403

    CAS  PubMed  Google Scholar 

  • Rodrigues JP, Paraguassú-Braga FH, Carvalho L, Abdelhay E, Bouzas LF, Porto LC (2008) Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology 56(2):144–151

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez L, Velasco B, García J, Martín-Henao GA (2005) Evaluation of an automated cell processing device to reduce the dimethyl sulfoxide from hematopoietic grafts after thawing. Transfusion 45(8):1391–1397

    Article  PubMed  Google Scholar 

  • Rowley S, MacLeod B, Heimfeld S, Holmberg L, Bensinger W (1999) Severe central nervous system toxicity associated with the infusion of cryopreserved PBSC components. Cytotherapy 1(4):311–317

    CAS  PubMed  Google Scholar 

  • Rubinstein P, Dobrila L, Rosenfield RE et al (1995) Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci U S A 92(22):10119–10122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Runckel DN, Swanson JR (1980) Effect of dimethyl sulfoxide on serum osmolality. Clin Chem 26(12):1745–1747

    CAS  PubMed  Google Scholar 

  • Samoszuk M, Reid ME, Toy PT (1983) Intravenous dimethylsulfoxide therapy causes severe hemolysis mimicking a hemolytic transfusion reaction. Transfusion 23(5):405

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Salinas A, Cabañas-Perianes V, Blanquer M et al (2012) An automatic wash method for dimethyl sulfoxide removal in autologous hematopoietic stem cell transplantation decreases the adverse effects related to infusion. Transfusion 52(11):2382–2386

    Article  PubMed  Google Scholar 

  • Sauer-Heilborn A, Kadidlo D, McCullough J (2004) Patient care during infusion of hematopoietic progenitor cells. Transfusion 44(6):907–916

    Article  PubMed  Google Scholar 

  • Scerpa MC, Daniele N, Landi F et al (2011) Automated washing of human progenitor cells: evaluation of apoptosis and cell necrosis. Transfus Med 21(6):402–407

    Article  CAS  PubMed  Google Scholar 

  • Smith DM, Weisenburger DD, Bierman P, Kessinger A, Vaughan WP, Armitage JO (1987) Acute renal failure associated with autologous bone marrow transplantation. Bone Marrow Transplant 2(2):195–201

    CAS  PubMed  Google Scholar 

  • Snyder EL, Haley NR (eds) (2004) Cellular therapy: a physician’s handbook, 1st edn. Bethesda, MD, AABB

    Google Scholar 

  • Spurr EE, Wiggins NE, Marsden KA, Lowenthal RM, Ragg SJ (2002) Cryopreserved human haematopoietic stem cells retain engraftment potential after extended (5-14 years) cryostorage. Cryobiology 44(3):210–217

    Article  PubMed  Google Scholar 

  • Svalgaard JD, Haastrup EK, Reckzeh K et al (2016) Low-molecular-weight carbohydrate Pentaisomaltose may replace dimethyl sulfoxide as a safer cryoprotectant for cryopreservation of peripheral blood stem cells. Transfusion 56(5):1088–1095

    Article  CAS  PubMed  Google Scholar 

  • Syme R, Bewick M, Stewart D, Porter K, Chadderton T, Glück S (2004) The role of depletion of dimethyl sulfoxide before autografting: on hematologic recovery, side effects, and toxicity. Biol Blood Marrow Transplant 10(2):135–141

    Article  CAS  PubMed  Google Scholar 

  • Vercueil A, Grocott MP, Mythen MG (2005) Physiology, pharmacology, and rationale for colloid administration for the maintenance of effective hemodynamic stability in critically ill patients. Transfus Med Rev 19(2):93–109

    Article  PubMed  Google Scholar 

  • Wagner JE, Barker JN, DeFor TE et al (2002) Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood 100(5):1611–1618

    CAS  PubMed  Google Scholar 

  • Windrum P, Morris TC, Drake MB, Niederwieser D, Ruutu T, Subcommittee ECLWPC (2005) Variation in dimethyl sulfoxide use in stem cell transplantation: a survey of EBMT centres. Bone Marrow Transplant 36(7):601–603

    Article  CAS  PubMed  Google Scholar 

  • Woods EJ, Liu J, Derrow CW, Smith FO, Williams DA, Critser JK (2000) Osmometric and permeability characteristics of human placental/umbilical cord blood CD34+ cells and their application to cryopreservation. J Hematother Stem Cell Res 9(2):161–173

    Article  CAS  PubMed  Google Scholar 

  • Yellowlees P, Greenfield C, McIntyre N (1980) Dimethylsulphoxide-induced toxicity. Lancet 2(8202):1004–1006

    Article  CAS  PubMed  Google Scholar 

  • Zambelli A, Poggi G, Da Prada G et al (1998) Clinical toxicity of cryopreserved circulating progenitor cells infusion. Anticancer Res 18(6B):4705–4708

    CAS  PubMed  Google Scholar 

  • Zeisberger SM, Schulz JC, Mairhofer M et al (2011) Biological and physicochemical characterization of a serum- and xeno-free chemically defined cryopreservation procedure for adult human progenitor cells. Cell Transplant 20(8):1241–1257

    Article  PubMed  Google Scholar 

  • Zenhäusern R, Tobler A, Leoncini L, Hess OM, Ferrari P (2000) Fatal cardiac arrhythmia after infusion of dimethyl sulfoxide-cryopreserved hematopoietic stem cells in a patient with severe primary cardiac amyloidosis and end-stage renal failure. Ann Hematol 79(9):523–526

    Article  PubMed  Google Scholar 

  • Zhang XB, Li K, Yau KH et al (2003) Trehalose ameliorates the cryopreservation of cord blood in a preclinical system and increases the recovery of CFUs, long-term culture-initiating cells, and nonobese diabetic-SCID repopulating cells. Transfusion 43(2):265–272

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronit Reich-Slotky Ph.D., M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Reich-Slotky, R. (2018). Peripheral Blood Hematopoietic Progenitor Cell Graft Thawing. In: Schwartz, J., Shaz, B. (eds) Best Practices in Processing and Storage for Hematopoietic Cell Transplantation . Advances and Controversies in Hematopoietic Transplantation and Cell Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-58949-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58949-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58948-0

  • Online ISBN: 978-3-319-58949-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics