Skip to main content

Abstract

Hematopoietic progenitor cell (HPC) products remain viable and capable of engraftment in a transplant recipient when stored in the “liquid state” at either refrigerated or room temperatures for approximately 72 h following collection. Cryopreservation enables long-term storage of HPC products and is used extensively for autologous products collected prior to high-dose chemotherapy (HDT) that are intended for use after treatment to rescue hematopoiesis. Allogeneic products may also be cryopreserved if treatment is delayed due to the donor’s or recipient’s medical condition, the donor’s cells are collected prior to their anticipated use because of donor availability, or more donor cells are obtained than needed and remaining cells are stored for future use. Similarly, allogeneic cord blood products are cryopreserved, prospectively banked, and made available through donor registries. In order for cryopreservation to be an effective tool, when thawed and infused, HPC must be able to regain their ability to proliferate, engraft, and provide the same functional capability prior to cryopreservation. Pre-cryopreservation storage conditions and manipulation procedures, cryoprotectant formulation, freezing rate, long-term storage temperatures, length of time in storage, and thawing conditions all have the potential to affect the quality and engraftment of thawed HPC products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Antonenas V, Garvin F, Webb M, Sartor M, Bradstock KF, Gottlieb D (2006) Fresh PBSC harvests, but not BM, show temperature-related loss of CD 34 viability during storage and transport. Cytotherapy 8:158–165

    Article  CAS  PubMed  Google Scholar 

  • Berens C, Heine A, Muller J, Held SAE, Mayer K, Brossart P, Oldenburg J, Potzch B, Wolf D, Ruhl H (2016) Variable resistance to freezing and thawing of CD34-postivie stem cells and lymphocyte subpopulations in leukapheresis products. Cytotherapy 18:1325–1331

    Article  CAS  PubMed  Google Scholar 

  • Branch DR, Calderwood S, Cecutti MA, Herst R, Solh H (1994) Hematopoietic progenitor cells are resistant to dimethyl sulfoxide toxicity. Transfusion 34:887–890

    Article  CAS  PubMed  Google Scholar 

  • Broxmeyer HE, Srour EF, Hangoc G, Cooper S, Anderson SA, Bodine DM (2003) High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years. Proc Natl Acad Sci U S A 100:645–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broxmeyer HE, Lee M-R, Hangoc G, Cooper S, Prasain N, Kim Y-J, Mallet C, Ye Z, Witting S, Cornetta K, Cheng L, Yoder MC (2011) Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood. Blood 117:4774–4777

    Article  Google Scholar 

  • Cabezudo E, Dalmases C, Ruiz M, Sanchez JA, Torrico C, Sola C et al (2000) Leukapheresis components may be cryopreserved at high cell concentrations without additional loss of HPC function. Transfusion 40:1223–1227

    Article  CAS  PubMed  Google Scholar 

  • Davis JM, Rowley SD, Braine HG, Piantadosi S, Santos GW (1990) Clinical toxicity of cryopreserved bone marrow graft infusion. Blood 75:781–786

    CAS  PubMed  Google Scholar 

  • Detry G, Calvet L, Straetmans N, Cabrespine A, Ravoet C, Bay JO, Petre H, Paillard C, Husson B, Merlin E, Boon-Falleur L, Tournilhac O, Delannoy A, Halle P (2014) Impact of uncontrolled freezing and long-term storage of peripheral blood stem cells at −80 °C on haematopoietic recovery after autologous transplantation. Report from two centres. Bone Marrow Transplant 49:780–785

    Article  CAS  PubMed  Google Scholar 

  • Donmez A, Tombuloglu M, Gungor A, Soyer N, Saydam G, Cagirgan S (2007) Clinical side effects during peripheral blood progenitor cell infusion. Transfus Apher Sci 36:95–101

    Article  PubMed  Google Scholar 

  • Douay L, Gorin NC, David R et al (1982) Study of granulocyte-macrophage progenitor (CFUc) preservation after slow freezing of bone marrow in the gas phase of liquid nitrogen. Exp Hematol 10:360–366

    CAS  PubMed  Google Scholar 

  • Duchez P, Rodriguez L, Chevaleyre J, DeLaGrange PB, Ivanovic Z (2016) Clinical-scale validation of a new efficient procedure for cryopreservation of ex vivo expanded cord blood hematopoietic stem and progenitor cells. Cytotherapy 18:1543–1547

    Article  CAS  PubMed  Google Scholar 

  • Fisher V, Khuu H, David-OCampo V, Byrne K Pavletic S, Bishop M, Fowler DH, Barrett AJ, Stroncek DF (2014) Analysis of the recovery of cryopreserved and thawed CD34+ and CD3+cells collected for hematopoietic transplantation. Transfusion 54:1088–1092

    Article  CAS  PubMed  Google Scholar 

  • Foundation for the Accreditation of Cellular Therapy and International NetCord Foundation (2016) NetCord-FACT international cord blood standards accreditation manual, 6th edn. Foundation for the Accreditation of Cellular Therapy and International NetCord Foundation, Nebraska, p 157

    Google Scholar 

  • Fountain D, Ralston M, Higgins N, Gorlin JB, Uhl L, Wheeler C et al (1997) Liquid nitrogen freezers: a potential source of microbial contamination of hematopoietic stem cell components. Transfusion 37:585–591

    Article  CAS  PubMed  Google Scholar 

  • Fry LJ, Giner SQ, Gomez SG, Green M, Anderson F, Horder J, McArdle S, Rees R, Madrigal JA (2013) Avoiding room temperature storage and delayed cryopreservation provide better postthaw potency in hematopoietic progenitor cell grafts. Transfusion 53:1834–1842

    Article  PubMed  Google Scholar 

  • Fry LJ, Querol S, Gomez SG, McArdle S, Rees R, Madrigal JA (2015) Assessing the toxic effects of DMSO on cord blood to determine exposure time limits and the optimum concentration for cryopreservation. Vox Sang 109:181–190

    Article  CAS  PubMed  Google Scholar 

  • Gorin NC (1986) Collection, manipulation and freezing of haemopoietic stem cells. Clin Haematol 15:19–48

    Article  CAS  PubMed  Google Scholar 

  • Hahn S, Sireis W, Hourfar K, Karpova D, Dauber K, Kempf VAJ, Selfried E, Schmidt M, Bonig H (2014) Effects of storage temperature on hematopoietic stability and microbial safety of BM aspirates. Bone Marrow Transplant 49:338–348

    Article  CAS  PubMed  Google Scholar 

  • Halle P, Tournihac O, Knopinsk-Posluszny W, Kanold J, Gembara P, Boiret N, Rapatel C, Berger M, Travade P, Angielski S, Bonhomme J, Demeocq F (2001) Uncontrolled-rate freezing and storage at −80°C, with only 3.5 percent DMSO in cryoprotective solution for 109 autologous peripheral blood progenitor cell transplantations. Transfusion 41:667–672

    Article  CAS  PubMed  Google Scholar 

  • Hubel A (2009) Cryopreservation of cellular therapy products. In: Areman EM, Loper K (eds) Cellular therapy: principles, methods, and regulations. Maryland, AABB, pp p342–p357

    Google Scholar 

  • Kao GS, Kim HT, Daley H, Ritz J, Burger SR, Kelly L, Vierra-Green C, Flesch S, Spellman S, Miller J, Confer D (2011) Validation of short-term handling and storage conditions for marrow and peripheral blood stem cell products. Transfusion 51:137–147

    Article  PubMed  Google Scholar 

  • Karow AM Jr, Webb WR (1965) Tissue freezing a theory for injury and survival. Cryobiology 2:99–108

    Article  PubMed  Google Scholar 

  • Lazarus HM, Kan F, Tarima S, Champlin RE, Confer DL, Frey N, Gee AP, Wagner JE, Horowitz MM, Eapen M (2009) Rapid transport and infusion of hematopoietic cells is associated with improved outcome after myeloablative therapy and unrelated donor transplant. Biol Blood Marrow Transplant 15:589–596

    Article  PubMed  PubMed Central  Google Scholar 

  • Lecchi L, Giovanelli S, Gagliardi B, Pezzali I, Ratti I, Marconi M (2016) An update on methods for cryopreservation and thawing of hemopoietic stem cells. Transfus Apher Sci 54:324–336

    Article  PubMed  Google Scholar 

  • Lovelock JE, Bishop MWH (1959) Prevention of freezing damage to living cells by dimethyl sulfoxide. Nature 183:1394–1395

    Article  CAS  PubMed  Google Scholar 

  • Martin-Henao GA, Torrico C, Azueta C, Amill B, Querol S, Garcia J (2005) Cryopreservation of hematopoietic progenitor cells from apheresis at high cell concentrations does not impair the hematopoietic recovery after transplantation. Transfusion 45:1917–1924

    Article  PubMed  Google Scholar 

  • Reich-Slotky R, Bachegowda LS, Ancharski M, Gergis U, van Besien K, Cushing MM (2016) Engraftment for CD34 selected stem cell products is not compromised by cryopreservation. Transfusion 56:893–898

    Article  CAS  PubMed  Google Scholar 

  • Rowley SD (1992) Hematopoietic stem cell cryopreservation: a review of current techniques. J Hematother 1:233–250

    Article  CAS  PubMed  Google Scholar 

  • Rowley SD, Anderson GL (1993) Effect of DMSO exposure without cryopreservation on hematopoietic progenitor cells. Bone Marrow Transplant 11:389–393

    CAS  PubMed  Google Scholar 

  • Rowley SD, Bensinger WI, Gooley TA, Buckner CD (1994) Effect of cell concentration on bone marrow and peripheral blood stem cell cryopreservation. Blood 83:2731–2736

    CAS  PubMed  Google Scholar 

  • Rubinstein P, Dobrila L, Rosenfield RE, Adamson JW, Migliaccio G, Migliaccio AR, Taylor PE, Stevens CE (1995) Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci U S A 92:10119–10122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smagur A, Mitrus I, Ciomber A, Panczyniak K, Fidyk W, Sadus-Wojciechowska M, Holowiecki J, Giebel S (2015) Comparison of cryoprotective solutions based on human albumin vs. autologous plasma: its effect on cell recovery, clonogenic potential of peripheral blood hematopoietic progenitor cells and engraftment after autologous transplantation. Vox Sang 108:417–424

    Article  CAS  PubMed  Google Scholar 

  • Smith DM, Weisenburger DD, Bierman P, Kessinger A, Vaughan WP, Armitage JO (1987) Acute renal failure associated with autologous bone marrow transplantation. Bone Marrow Transplant 2:195

    CAS  PubMed  Google Scholar 

  • Stiff PJ, Koester AR, Weidner MK, Dvorak K, Fisher RI (1987) Autologous bone marrow transplantation using unfractionated cells cryopreserved in dimethylsulfoxide and hydroxyethyl starch without controlled-rate freezing. Blood 70:974–978

    CAS  PubMed  Google Scholar 

  • Stroncek DF, Fautsch SK, Lasky LC, Hurd DD, Ramsay NKC, McCullough J (1991) Adverse reactions in patients transfused with cryopreserved marrow. Transfusion 31:521–526

    Article  CAS  PubMed  Google Scholar 

  • Stroncek DE, Xing L, Chau Q, Zia N, McKelvy A, Pracht L, Sabatino M, Jin P (2011) Stability of cryopreserved white blood cells (WBCs) prepared for donor WBC infusions. Tranfusion 51:2647–2655

    Article  Google Scholar 

  • Svalgaard JD, Haastrup EK, Reckzeh K, Holst B, Glovinski PV, Gorlov JS, Hansen MB, Moench KT, Clausen C, Fischer-Nielsen A (2016) Low-molecular-weight carbohydrate Pentaisomaltose may replace dimethyl sulfoxide as a safer cryoprotectant for cryopreservation of peripheral blood stem cells. Transfusion 56:1088–1095

    Article  CAS  PubMed  Google Scholar 

  • Tedder RS, FFuckerman MA, Goldstone AH, Hawkins AE, Fielding A, Briggs EM et al (1995) Hepatitis B transmission from contaminated cryopreservation tank. Lancet 346:137–140

    Article  CAS  PubMed  Google Scholar 

  • Veeraputhiran M, Theus JW, Pesek G, Barlogie B, Cottler-Fox M (2010) Viability and engraftment of hematopoietic progenitor cells after long-term cryopreservation: effect of diagnosis and percentage dimethyl sulfoxide concentration. Cytotherapy 12:764–766

    Article  CAS  PubMed  Google Scholar 

  • Vosganian GS, Waalen J, Kim K, Jhatakia S, Scram E, Lee T, Riddell D, Mason JR (2012) Effects of long-term cryopreservation on peripheral blood progenitor cells. Cytotherapy 14:1228–1234

    Article  CAS  PubMed  Google Scholar 

  • Winter JM, Jacobson P, Bullough B, Christensen AP, Boyer M, Reems J-A (2014) Long-erm effects of cryopreservation on clinically prepared hematopoietic progenitor cell products. Cytotherapy 16:965–975

    Article  CAS  PubMed  Google Scholar 

  • Zambelli A, Poggi G, Da Prada G, Pedrazzoli P, Cuomo A, Miotti D, Perotti C, Preti P, Robustelli della Cuna G (1998) Clinical toxicity of cryopreserved circulating progenitor cells infusion. Anticancer Res 18:4705–4708

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rona Singer Weinberg Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Weinberg, R.S. (2018). Cryopreservation Techniques and Freezing Solutions. In: Schwartz, J., Shaz, B. (eds) Best Practices in Processing and Storage for Hematopoietic Cell Transplantation . Advances and Controversies in Hematopoietic Transplantation and Cell Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-58949-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58949-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58948-0

  • Online ISBN: 978-3-319-58949-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics