Skip to main content

Abstract

About 2500 transplantations using cord blood (CB) units for hematopoietic reconstitution are performed each year in the world. Their advantages, compared to other allogeneic hematopoietic progenitor cell (HPC) sources such as peripheral blood and bone marrow, are that CB HPCs allow higher HLA mismatch, result in lower GvHD rates, and are readily available for transplantation. Since CB units are small-dose, cryopreserved, and irreplaceable products, their preparation for transplantation is relatively more complex than other HPC sources. Additionally, each cord blood bank (CBB) uses slightly different methods to collect, process, and cryopreserve CB units, increasing the complexity of their processing. In order to determine how to prepare CB units for infusion, transplant centers need to assess multiple factors including transplant program setting, patient demographics, and availability of trained laboratory staff.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • AABB AAoTB, American Red Cross, American Society for Blood and Marrow, Transplantation ASfA, America’s Blood Centers, College of American Pathologists, Cord Blood Association, Foundation for the Accreditation of, Cellular Therapy I, International NetCord Foundation, International Society for Cellular Therapy, JACIE Accreditation Office, Program NMD (2016) Circular of information for the use of cellular therapy products. AABB, Bethesda, MD

    Google Scholar 

  • Alonso JM, Regan DM, Johnson CE et al (2001) A simple and reliable procedure for cord blood banking, processing, and freezing: St Louis and Ohio Cord Blood Bank experiences. Cytotherapy 3(6):429–433

    Article  PubMed  Google Scholar 

  • Anchordoguy TJ, Carpenter JF, Crowe JH, Crowe LM (1992) Temperature-dependent perturbation of phospholipid bilayers by dimethyl sulfoxide. Biochim Biophys Acta 1104(1):117–122

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T, Carpenter JF, Kita YA, Crowe JH (1990) The basis for toxicity of certain cryoprotectants: a hypothesis. Cryobiology 27:401–415

    Article  CAS  Google Scholar 

  • Bakken AM, Bruserud O, Abrahamsen JF (2003) No differences in colony formation of peripheral blood stem cells frozen with 5% or 10% dimethyl sulfoxide. J Hematother Stem Cell Res 12(3):351–358

    Article  CAS  PubMed  Google Scholar 

  • Barker JN, Abboud M, Rice RD et al (2009) A “no-wash” albumin-dextran dilution strategy for cord blood unit thaw: high rate of engraftment and a low incidence of serious infusion reactions. Biol Blood Marrow Transplant 15(12):1596–1602

    Article  PubMed  PubMed Central  Google Scholar 

  • Basford C, Forraz N, Habibollah S, Hanger K, McGuckin C (2010) The cord blood separation league table: a comparison of the major clinical grade harvesting techniques for cord blood stem cells. Int J Stem Cells 3(1):32–45

    Article  PubMed  PubMed Central  Google Scholar 

  • Broxmeyer HE, Douglas GW, Hangoc G et al (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A 86(10):3828–3832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broxmeyer HE, Srour EF, Hangoc G, Cooper S, Anderson SA, Bodine DM (2003) High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years. Proc Natl Acad Sci U S A 100(2):645–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler MG, Menitove JE (2011) Umbilical cord blood banking: an update. J Assist Reprod Genet 28(8):669–676

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi S, Hoffmann S, Cooling L (2012) Another case of acute cardiopulmonary toxicity with cord blood infusion: is dextran the culprit? Transfusion 52(1):207–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Chow R, Nademanee A, Rosenthal J et al (2007) Analysis of hematopoietic cell transplants using plasma-depleted cord blood products that are not red blood cell reduced. Biol Blood Marrow Transplant 13(11):1346–1357

    Article  PubMed  Google Scholar 

  • Chow R, Lin A, Tonai R et al (2011) Cell recovery comparison between plasma depletion/reduction- and red cell reduction-processing of umbilical cord blood. Cytotherapy 13(9):1105–1119

    Article  CAS  PubMed  Google Scholar 

  • Chrysler G, McKenna D, Scheierman T et al (2004) Umbilical cord blood banking. In: Broxmeyer HE (ed) Cord blood: biology, immunology, banking and clinical transplantation. American Association of Blood Banks, Bethesda, MD, pp 219–257

    Google Scholar 

  • Davis JM, Rowley SD, Braine HG, Piantadosi S, Santos GW (1990) Clinical toxicity of cryopreserved bone marrow graft infusion. Blood 75(3):781–786

    CAS  PubMed  Google Scholar 

  • Dazey B, Duchez P, Letellier C, Vezon G, Ivanovic Z, Network FCB (2005) Cord blood processing by using a standard manual technique and automated closed system “Sepax” (Kit CS-530). Stem Cells Dev 14(1):6–10

    Article  PubMed  Google Scholar 

  • Foïs E, Desmartin M, Benhamida S et al (2007) Recovery, viability and clinical toxicity of thawed and washed haematopoietic progenitor cells: analysis of 952 autologous peripheral blood stem cell transplantations. Bone Marrow Transplant 40(9):831–835

    Article  PubMed  Google Scholar 

  • Gluckman E, Broxmeyer HA, Auerbach AD et al (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321(17):1174–1178

    Article  CAS  PubMed  Google Scholar 

  • Gluckman E, Rocha V, Boyer-Chammard A et al (1997) Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med 337(6):373–381

    Article  CAS  PubMed  Google Scholar 

  • Hahn T, Bunworasate U, George MC et al (2003) Use of nonvolume-reduced (unmanipulated after thawing) umbilical cord blood stem cells for allogeneic transplantation results in safe engraftment. Bone Marrow Transplant 32(2):145–150

    Article  CAS  PubMed  Google Scholar 

  • Komanduri KV, St John LS, de Lima M et al (2007) Delayed immune reconstitution after cord blood transplantation is characterized by impaired thymopoiesis and late memory T-cell skewing. Blood 110(13):4543–4551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtzberg J, Laughlin M, Graham ML et al (1996) Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med 335(3):157–166

    Article  CAS  PubMed  Google Scholar 

  • Kurtzberg J, Cairo MS, Fraser JK et al (2005) Results of the cord blood transplantation (COBLT) study unrelated donor banking program. Transfusion 45(6):842–855

    Article  PubMed  Google Scholar 

  • Kurtzberg J, Prasad VK, Carter SL et al (2008) Results of the Cord Blood Transplantation Study (COBLT): clinical outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with hematologic malignancies. Blood 112(10):4318–4327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapierre V, Pellegrini N, Bardey I et al (2007) Cord blood volume reduction using an automated system (Sepax) vs. a semi-automated system (Optipress II) and a manual method (hydroxyethyl starch sedimentation) for routine cord blood banking: a comparative study. Cytotherapy 9(2):165–169

    Article  CAS  PubMed  Google Scholar 

  • Laroche V, McKenna DH, Moroff G, Schierman T, Kadidlo D, McCullough J (2005) Cell loss and recovery in umbilical cord blood processing: a comparison of postthaw and postwash samples. Transfusion 45(12):1909–1916

    Article  PubMed  Google Scholar 

  • Locatelli F, Rocha V, Chastang C et al (1999) Factors associated with outcome after cord blood transplantation in children with acute leukemia. Eurocord-Cord Blood Transplant Group. Blood 93(11):3662–3671

    CAS  PubMed  Google Scholar 

  • Lovelock JE, Bishop MW (1959) Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 183(4672):1394–1395

    Article  CAS  PubMed  Google Scholar 

  • Mazur P (2004) Principles of cryobiology. In: Fuller BJLN, Benson E (eds) Life in the frozen state. CRC, Boca Raton, FL, pp 3–66

    Chapter  Google Scholar 

  • Mazur P, Leibo SP, Chu EH (1972) A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. Exp Cell Res 71(2):345–355

    Article  CAS  PubMed  Google Scholar 

  • Migliaccio AR, Adamson JW, Stevens CE, Dobrila NL, Carrier CM, Rubinstein P (2000) Cell dose and speed of engraftment in placental/umbilical cord blood transplantation: graft progenitor cell content is a better predictor than nucleated cell quantity. Blood 96(8):2717–2722

    CAS  PubMed  Google Scholar 

  • Miller JA (2009) Centralized cord blood registry to facilitate allogeneic, unrelated cord blood transplantation. National Marrow Donor Program, Minneapolis, MN

    Google Scholar 

  • Mitchell R, Wagner JE, Brunstein CG et al (2015) Impact of long-term cryopreservation on single umbilical cord blood transplantation outcomes. Biol Blood Marrow Transplant 21(1):50–54

    Article  PubMed  Google Scholar 

  • Nagamura-Inoue T, Shioya M, Sugo M et al (2003) Wash-out of DMSO does not improve the speed of engraftment of cord blood transplantation: follow-up of 46 adult patients with units shipped from a single cord blood bank. Transfusion 43(9):1285–1295

    Article  PubMed  Google Scholar 

  • Pasquini M, Zhu X (2015) Current uses and outcomes of hematopoietic stem cell transplantation: CIBMTR summary slides. http://www.cibmtr.org

  • Perotti CG, Del Fante C, Viarengo G et al (2004) A new automated cell washer device for thawed cord blood units. Transfusion 44(6):900–906

    Article  PubMed  Google Scholar 

  • Regan DM, Wofford JD, Wall DA (2010) Comparison of cord blood thawing methods on cell recovery, potency, and infusion. Transfusion 50(12):2670–2675

    Article  PubMed  Google Scholar 

  • Reich-Slotky R, Bachegowda LS, Ancharski M et al (2015) How we handled the dextran shortage: an alternative washing or dilution solution for cord blood infusions. Transfusion 55(6):1147–1153

    Article  CAS  PubMed  Google Scholar 

  • Rocha V, Gluckman E, Group E-NraEBaMT (2009) Improving outcomes of cord blood transplantation: HLA matching, cell dose and other graft- and transplantation-related factors. Br J Haematol 147(2):262–274

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JP, Paraguassú-Braga FH, Carvalho L, Abdelhay E, Bouzas LF, Porto LC (2008) Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology 56(2):144–151

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez L, Azqueta C, Azzalin S, García J, Querol S (2004) Washing of cord blood grafts after thawing: high cell recovery using an automated and closed system. Vox Sang 87(3):165–172

    Article  PubMed  Google Scholar 

  • Rubinstein P, Dobrila L, Rosenfield RE et al (1995) Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci U S A 92(22):10119–10122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggeri A (2016) Alternative donors: cord blood for adults. Semin Hematol 53(2):65–73

    Article  PubMed  Google Scholar 

  • Sánchez-Salinas A, Cabañas-Perianes V, Blanquer M et al (2012) An automatic wash method for dimethyl sulfoxide removal in autologous hematopoietic stem cell transplantation decreases the adverse effects related to infusion. Transfusion 52(11):2382–2386

    Article  PubMed  Google Scholar 

  • Scerpa MC, Daniele N, Landi F et al (2011) Automated washing of human progenitor cells: evaluation of apoptosis and cell necrosis. Transfus Med 21(6):402–407

    Article  CAS  PubMed  Google Scholar 

  • Smith DM, Weisenburger DD, Bierman P, Kessinger A, Vaughan WP, Armitage JO (1987) Acute renal failure associated with autologous bone marrow transplantation. Bone Marrow Transplant 2(2):195–201

    CAS  PubMed  Google Scholar 

  • Solves P, Mirabet V, Blanquer A et al (2009) A new automatic device for routine cord blood banking: critical analysis of different volume reduction methodologies. Cytotherapy 11(8):1101–1107

    Article  CAS  PubMed  Google Scholar 

  • Stroncek DF, Fautsch SK, Lasky LC, Hurd DD, Ramsay NK, McCullough J (1991) Adverse reactions in patients transfused with cryopreserved marrow. Transfusion 31(6):521–526

    Article  CAS  PubMed  Google Scholar 

  • Svalgaard JD, Haastrup EK, Reckzeh K et al (2016) Low-molecular-weight carbohydrate Pentaisomaltose may replace dimethyl sulfoxide as a safer cryoprotectant for cryopreservation of peripheral blood stem cells. Transfusion 56(5):1088–1095

    Article  CAS  PubMed  Google Scholar 

  • Takahashi TA, Rebulla P, Armitage S et al (2006) Multi-laboratory evaluation of procedures for reducing the volume of cord blood: influence on cell recoveries. Cytotherapy 8(3):254–264

    Article  CAS  PubMed  Google Scholar 

  • Thyagarajan B, Berger M, Sumstad D, McKenna DH (2008) Loss of integrity of umbilical cord blood unit freezing bags: description and consequences. Transfusion 48(6):1138–1142

    Article  PubMed  Google Scholar 

  • Wagner JE, Barker JN, DeFor TE et al (2002) Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood 100(5):1611–1618

    CAS  PubMed  Google Scholar 

  • Woods EJ, Liu J, Derrow CW, Smith FO, Williams DA, Critser JK (2000) Osmometric and permeability characteristics of human placental/umbilical cord blood CD34+ cells and their application to cryopreservation. J Hematother Stem Cell Res 9(2):161–173

    Article  CAS  PubMed  Google Scholar 

  • Young W (2014) Plasma-depleted versus red cell-reduced umbilical cord blood. Cell Transplant 23(4–5):407–415

    Article  PubMed  Google Scholar 

  • Zambelli A, Poggi G, Da Prada G et al (1998) Clinical toxicity of cryopreserved circulating progenitor cells infusion. Anticancer Res 18(6B):4705–4708

    CAS  PubMed  Google Scholar 

  • Zeisberger SM, Schulz JC, Mairhofer M et al (2011) Biological and physicochemical characterization of a serum- and xeno-free chemically defined cryopreservation procedure for adult human progenitor cells. Cell Transplant 20(8):1241–1257

    Article  PubMed  Google Scholar 

  • Zenhäusern R, Tobler A, Leoncini L, Hess OM, Ferrari P (2000) Fatal cardiac arrhythmia after infusion of dimethyl sulfoxide-cryopreserved hematopoietic stem cells in a patient with severe primary cardiac amyloidosis and end-stage renal failure. Ann Hematol 79(9):523–526

    Article  PubMed  Google Scholar 

  • Zhang XB, Li K, Yau KH et al (2003) Trehalose ameliorates the cryopreservation of cord blood in a preclinical system and increases the recovery of CFUs, long-term culture-initiating cells, and nonobese diabetic-SCID repopulating cells. Transfusion 43(2):265–272

    Article  CAS  PubMed  Google Scholar 

  • Zinno F, Landi F, Scerpa MC et al (2011) Processing of hematopoietic stem cells from peripheral blood before cryopreservation: use of a closed automated system. Transfusion 51(12):2656–2663

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronit Reich-Slotky Ph.D., M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Reich-Slotky, R. (2018). Cord Blood Graft Thawing. In: Schwartz, J., Shaz, B. (eds) Best Practices in Processing and Storage for Hematopoietic Cell Transplantation . Advances and Controversies in Hematopoietic Transplantation and Cell Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-58949-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58949-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58948-0

  • Online ISBN: 978-3-319-58949-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics