Skip to main content

The Power of Xenopus Egg Extract for Reconstitution of Centromere and Kinetochore Function

  • Chapter
  • First Online:
Centromeres and Kinetochores

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 56))

Abstract

Faithful transmission of genetic information during cell division requires attachment of chromosomes to the mitotic spindle via the kinetochore. In vitro reconstitution studies are beginning to uncover how the kinetochore is assembled upon the underlying centromere, how the kinetochore couples chromosome movement to microtubule dynamics, and how cells ensure the site of kinetochore assembly is maintained from one generation to the next. Here we give special emphasis to advances made in Xenopus egg extract, which provides a unique, biochemically tractable in vitro system that affords the complexity of cytoplasm and nucleoplasm to permit reconstitution of the dynamic, cell cycle-regulated functions of the centromere and kinetochore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrieu A, Magnaghi-Jaulin L, Kahana JA, Peter M, Castro A, Vigneron S, Lorca T, Cleveland DW, Labbe J (2001) Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 106:83–93

    Article  CAS  PubMed  Google Scholar 

  • Akiyoshi B, Nelson CR, Ranish JA, Biggins S (2009) Quantitative proteomic analysis of purified yeast kinetochores identifies a PP1 regulatory subunit. Genes Dev 23(24):2887–2899. doi:10.1101/gad.1865909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyoshi B, Sarangapani KK, Powers AF, Nelson CR, Reichow SL, Arellano-Santoyo H, Gonen T, Ranish JA, Asbury CL, Biggins S (2010) Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468(7323):576–579. doi:10.1038/nature09594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almagro S, Dimitrov S (2005) Assembly and micromanipulation of Xenopus in vitro-assembled mitotic chromosomes. Curr Protoc Cell Biol. doi:10.1002/0471143030.cb2209s26 (Chapter 22:Unit 22 29)

  • Almouzni G, Mechali M (1988a) Assembly of spaced chromatin involvement of ATP and DNA topoisomerase activity. EMBO J 7(13):4355–4365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almouzni G, Mechali M (1988b) Assembly of spaced chromatin promoted by DNA synthesis in extracts from Xenopus eggs. EMBO J 7(3):665–672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alushin GM, Ramey VH, Pasqualato S, Ball DA, Grigorieff N, Musacchio A, Nogales E (2010) The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 467(7317):805–810. doi:10.1038/nature09423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aravamudhan P, Goldfarb AA, Joglekar AP (2015) The kinetochore encodes a mechanical switch to disrupt spindle assembly checkpoint signalling. Nat Cell Biol 17(7):868–879. doi:10.1038/ncb3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aze A, Sannino V, Soffientini P, Bachi A, Costanzo V (2016) Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression. Nat Cell Biol 18(6):684–691. doi:10.1038/ncb3344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnhart MC, Kuich PH, Stellfox ME, Ward JA, Bassett EA, Black BE, Foltz DR (2011) HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J Cell Biol 194(2):229–243. doi:10.1083/jcb.201012017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basilico F, Maffini S, Weir JR, Prumbaum D, Rojas AM, Zimniak T, De Antoni A, Jeganathan S, Voss B, van Gerwen S, Krenn V, Massimiliano L, Valencia A, Vetter IR, Herzog F, Raunser S, Pasqualato S, Musacchio A (2014) The pseudo GTPase CENP-M drives human kinetochore assembly. Elife 3:e02978. doi:10.7554/eLife.02978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benbow RM, Ford CC (1975) Cytoplasmic control of nuclear DNA synthesis during early development of Xenopus laevis: a cell-free assay. Proc Natl Acad Sci USA 72(6):2437–2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benbow RM, Pestell RQW, Ford CC (1975) Appearance of DNA-polymerase activities during early development of Xenopus-Laevis. Dev Biol 43(1):159–174. doi:10.1016/0012-1606(75)90138-4

    Article  CAS  Google Scholar 

  • Bernad R, Sanchez P, Rivera T, Rodriguez-Corsino M, Boyarchuk E, Vassias I, Ray-Gallet D, Arnaoutov A, Dasso M, Almouzni G, Losada A (2011) Xenopus HJURP and condensin II are required for CENP-A assembly. J Cell Biol 192(4):569–582. doi:10.1083/jcb.201005136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharadwaj R, Qi W, Yu H (2004) Identification of two novel components of the human NDC80 kinetochore complex. J Biol Chem 279(13):13076–13085. doi:10.1074/jbc.M310224200

    Article  CAS  PubMed  Google Scholar 

  • Black BE, Foltz DR, Chakravarthy S, Luger K, Woods VL Jr, Cleveland DW (2004) Structural determinants for generating centromeric chromatin. Nature 430(6999):578–582. doi:10.1038/nature02766

    Article  CAS  PubMed  Google Scholar 

  • Blow JJ, Laskey RA (1986) Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell 47(4):577–587

    Article  CAS  PubMed  Google Scholar 

  • Blow JJ, Laskey RA (2016) Xenopus cell-free extracts and their contribution to the study of DNA replication and other complex biological processes. Int J Dev Biol 60(7-8-9):201–207. doi:10.1387/ijdb.160142jb

    Article  PubMed  Google Scholar 

  • Carroll CW, Silva MC, Godek KM, Jansen LE, Straight AF (2009) Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat Cell Biol 11(7):896–902. doi:10.1038/ncb1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll CW, Milks KJ, Straight AF (2010) Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol 189(7):1143–1155. doi:10.1083/jcb.201001013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang JB, Ferrell JE Jr (2013) Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle. Nature 500(7464):603–607. doi:10.1038/nature12321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheeseman IM (2014) The kinetochore. Cold Spring Harb Perspect Biol 6(7):a015826. doi:10.1101/cshperspect.a015826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A (2006) The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127(5):983–997. doi:10.1016/j.cell.2006.09.039

    Article  CAS  PubMed  Google Scholar 

  • Chen RH (2002) BubR1 is essential for kinetochore localization of other spindle checkpoint proteins and its phosphorylation requires Mad1. J Cell Biol 158(3):487–496. doi:10.1083/jcb.200204048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen RH (2008) The spindle checkpoint in Xenopus laevis. Front Biosci 13:2231–2237

    Article  CAS  PubMed  Google Scholar 

  • Chen RH, Waters JC, Salmon ED, Murray AW (1996) Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274(5285):242–246

    Article  CAS  PubMed  Google Scholar 

  • Ciferri C, Pasqualato S, Screpanti E, Varetti G, Santaguida S, Dos Reis G, Maiolica A, Polka J, De Luca JG, De Wulf P, Salek M, Rappsilber J, Moores CA, Salmon ED, Musacchio A (2008) Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133(3):427–439. doi:10.1016/j.cell.2008.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collin P, Nashchekina O, Walker R, Pines J (2013) The spindle assembly checkpoint works like a rheostat rather than a toggle switch. Nat Cell Biol 15(11):1378–1385. doi:10.1038/ncb2855

    Article  CAS  PubMed  Google Scholar 

  • Desai A, Deacon HW, Walczak CE, Mitchison TJ (1997) A method that allows the assembly of kinetochore components onto chromosomes condensed in clarified Xenopus egg extracts. Proc Natl Acad Sci USA 94:12378–12383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai A, Murray A, Mitchison TJ, Walczak CE (1998) Chapter 20 The use of xenopus egg extracts to study mitotic spindle assembly and function in vitro. Methods Cell Biol 61:385–412. doi:10.1016/s0091-679x(08)61991-3

    Article  Google Scholar 

  • Dunleavy EM, Roche D, Tagami H, Lacoste N, Ray-Gallet D, Nakamura Y, Daigo Y, Nakatani Y, Almouzni-Pettinotti G (2009) HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137(3):485–497. doi:10.1016/j.cell.2009.02.040

    Article  CAS  PubMed  Google Scholar 

  • Dunleavy EM, Almouzni G, Karpen GH (2011) H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G(1) phase. Nucleus 2(2):146–157. doi:10.4161/nucl.2.2.15211

    Article  PubMed  PubMed Central  Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91(3–4):313–321. doi:10.1007/Bf00328227

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw WC, Honda BM, Laskey RA, Thomas JO (1980) Assembly of nucleosomes: the reaction involving X. Laevis nucleoplasmin. Cell 21(2):373–383

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw W, Bordwell B, Marino C, Rothfield N (1986) Three human chromosomal autoantigens are recognized by sera from patients with anti-centromere antibodies. J Clin Invest 77(2):426–430. doi:10.1172/JCI112320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earnshaw WC, Sullivan KF, Machlin PS, Cooke CA, Kaiser DA, Pollard TD, Rothfield NF, Cleveland DW (1987) Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J Cell Biol 104(4):817–829

    Article  CAS  PubMed  Google Scholar 

  • Fachinetti D, Diego Folco H, Nechemia-Arbely Y, Valente LP, Nguyen K, Wong AJ, Zhu Q, Holland AJ, Desai A, Jansen LE, Cleveland DW (2013) A two-step mechanism for epigenetic specification of centromere identity and function. Nat Cell Biol 15(9):1056–1066. doi:10.1038/ncb2805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang G, Yu H, Kirschner MW (1998) The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev 12(12):1871–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flemming W (1880) Beitrage zur Kenntniss der Zelle und ihrer Lebenserscheinungen, Theil II. Archivfiir Mikroskopische Anatomie 18:151–259

    Article  Google Scholar 

  • Foley EA, Kapoor TM (2013) Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 14(1):25–37. doi:10.1038/nrm3494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR 3rd, Cleveland DW (2006) The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 8(5):458–469. doi:10.1038/ncb1397

    Article  CAS  PubMed  Google Scholar 

  • Foltz DR, Jansen LE, Bailey AO, Yates JR 3rd, Bassett EA, Wood S, Black BE, Cleveland DW (2009) Centromere-specific assembly of CENP-A nucleosomes is mediated by HJURP. Cell 137(3):472–484. doi:10.1016/j.cell.2009.02.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita Y, Hayashi T, Kiyomitsu T, Toyoda Y, Kokubu A, Obuse C, Yanagida M (2007) Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev Cell 12(1):17–30. doi:10.1016/j.devcel.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  • Furuyama T, Dalal Y, Henikoff S (2006) Chaperone-mediated assembly of centromeric chromatin in vitro. Proc Natl Acad Sci USA 103(16):6172–6177. doi:10.1073/pnas.0601686103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garner E, Costanzo V (2009) Studying the DNA damage response using in vitro model systems. DNA Repair (Amst) 8(9):1025–1037. doi:10.1016/j.dnarep.2009.04.015

    Article  CAS  Google Scholar 

  • Gascoigne KE, Takeuchi K, Suzuki A, Hori T, Fukagawa T, Cheeseman IM (2011) Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145(3):410–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonen S, Akiyoshi B, Iadanza MG, Shi D, Duggan N, Biggins S, Gonen T (2012) The structure of purified kinetochores reveals multiple microtubule-attachment sites. Nat Struct Mol Biol 19(9):925–929. doi:10.1038/nsmb.2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gudimchuk N, Vitre B, Kim Y, Kiyatkin A, Cleveland DW, Ataullakhanov FI, Grishchuk EL (2013) Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips. Nat Cell Biol 15(9):1079–1088. doi:10.1038/ncb2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurdon JB (1968) Changes in somatic cell nuclei inserted into growing and maturing amphibian oocytes. J Embryol Exp Morphol 20(3):401–414

    CAS  PubMed  Google Scholar 

  • Gurdon JB, Woodland HR (1968) The cytoplasmic control of nuclear activity in animal development. Biol Rev Camb Philos Soc 43(2):233–267

    Article  CAS  PubMed  Google Scholar 

  • Guse A, Carroll CW, Moree B, Fuller CJ, Straight AF (2011) In vitro centromere and kinetochore assembly on defined chromatin templates. Nature 477(7364):354–358. doi:10.1038/nature10379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi T, Fujita Y, Iwasaki O, Adachi Y, Takahashi K, Yanagida M (2004) Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118(6):715–729. doi:10.1016/j.cell.2004.09.002

    Article  CAS  PubMed  Google Scholar 

  • He X, Rines DR, Espelin CW, Sorger PK (2001) Molecular analysis of kinetochore-microtubule attachment in budding yeast. Cell 106(2):195–206

    Article  CAS  PubMed  Google Scholar 

  • Heald R, Tournebize R, Blank T, Sandaltzopoulos R, Becker P, Hyman A, Karsenti E (1996) Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382(6590):420–425. doi:10.1038/382420a0

    Article  CAS  PubMed  Google Scholar 

  • Heinrich S, Geissen EM, Kamenz J, Trautmann S, Widmer C, Drewe P, Knop M, Radde N, Hasenauer J, Hauf S (2013) Determinants of robustness in spindle assembly checkpoint signalling. Nat Cell Biol 15(11):1328–1339. doi:10.1038/ncb2864

    Article  CAS  PubMed  Google Scholar 

  • Hewitt L, Tighe A, Santaguida S, White AM, Jones CD, Musacchio A, Green S, Taylor SS (2010) Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex. J Cell Biol 190(1):25–34. doi:10.1083/jcb.201002133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinshaw SM, Harrison SC (2013) An Iml3-Chl4 heterodimer links the core centromere to factors required for accurate chromosome segregation. Cell Rep. doi:10.1016/j.celrep.2013.08.036

    PubMed  PubMed Central  Google Scholar 

  • Hiruma Y, Sacristan C, Pachis ST, Adamopoulos A, Kuijt T, Ubbink M, von Castelmur E, Perrakis A, Kops GJPL (2015) Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling. Science 348(6240):1264–1267. doi:10.1126/science.aaa4055

    Article  CAS  PubMed  Google Scholar 

  • Hoyt MA, Totis L, Roberts BT (1991) S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66(3):507–517

    Article  CAS  PubMed  Google Scholar 

  • Huis In ’t Veld PJ, Jeganathan S, Petrovic A, Singh P, John J, Krenn V, Weissmann F, Bange T, Musacchio A (2016) Molecular basis of outer kinetochore assembly on CENP-T. Elife 5:e21007. doi:10.7554/eLife.21007

    PubMed  PubMed Central  Google Scholar 

  • Hyman AA, Mitchison TJ (1990) Modulation of microtubule stability by kinetochores in vitro. J Cell Biol 110(5):1607–1616

    Article  CAS  PubMed  Google Scholar 

  • Hyman AA, Middleton K, Centola M, Mitchison TJ, Carbon J (1992) Microtubule-motor activity of a yeast centromere-binding protein complex. Nature 359(6395):533–536. doi:10.1038/359533a0

    Article  CAS  PubMed  Google Scholar 

  • Iwao Y, Katagiri C (1984) In vitro induction of sperm nucleus decondensation by cytosol from mature toad eggs. J Exp Zool 230(1):115–124. doi:10.1002/jez.1402300115

    Article  CAS  PubMed  Google Scholar 

  • Izawa D, Pines J (2015) The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C. Nature 517(7536):631–634. doi:10.1038/nature13911

    Article  CAS  PubMed  Google Scholar 

  • Izuta H, Ikeno M, Suzuki N, Tomonaga T, Nozaki N, Obuse C, Kisu Y, Goshima N, Nomura F, Nomura N, Yoda K (2006) Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11(6):673–684. doi:10.1111/j.1365-2443.2006.00969.x

    Article  CAS  PubMed  Google Scholar 

  • Janke C, Ortiz J, Lechner J, Shevchenko A, Shevchenko A, Magiera MM, Schramm C, Schiebel E (2001) The budding yeast proteins Spc24p and Spc25p interact with Ndc80p and Nuf2p at the kinetochore and are important for kinetochore clustering and checkpoint control. EMBO J 20(4):777–791. doi:10.1093/emboj/20.4.777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen LE, Black BE, Foltz DR, Cleveland DW (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 176(6):795–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Z, Gao H, Yu H (2015) Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C. Science 348(6240):1260–1264. doi:10.1126/science.aaa4029

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Jiang J, Zhou BR, Rozendaal M, Feng H, Ghirlando R, Xiao TS, Straight AF, Bai Y (2013) A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C. Science 340(6136):1110–1113. doi:10.1126/science.1235532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim IS, Lee M, Park KC, Jeon Y, Park JH, Hwang EJ, Jeon TI, Ko S, Lee H, Baek SH, Kim KI (2012) Roles of Mis18alpha in epigenetic regulation of centromeric chromatin and CENP-A loading. Mol Cell 46(3):260–273. doi:10.1016/j.molcel.2012.03.021

    Article  CAS  PubMed  Google Scholar 

  • Kingsbury J, Koshland D (1991) Centromere-dependent binding of yeast minichromosomes to microtubules in vitro. Cell 66(3):483–495

    Article  CAS  PubMed  Google Scholar 

  • Klare K, Weir JR, Basilico F, Zimniak T, Massimiliano L, Ludwigs N, Herzog F, Musacchio A (2015) CENP-C is a blueprint for constitutive centromere-associated network assembly within human kinetochores. J Cell Biol 210(1):11–22. doi:10.1083/jcb.201412028

    Article  CAS  PubMed  Google Scholar 

  • Kornbluth S, Evans EK (2001) Analysis of apoptosis using Xenopus egg extracts. Curr Protoc Cell Biol. doi:10.1002/0471143030.cb1112s09 (Chapter 11:Unit 11 12)

  • Kornbluth S, Smythe C, Newport J (1992) In vitro cell cycle arrest induced by using artificial DNA templates. Mol Cell Biol 12(7):3216–3223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshland DE, Mitchison TJ, Kirschner MW (1988) Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 331(6156):499–504. doi:10.1038/331499a0

    Article  CAS  PubMed  Google Scholar 

  • Krizaic I, Williams SJ, Sanchez P, Rodriguez-Corsino M, Stukenberg PT, Losada A (2015) The distinct functions of CENP-C and CENP-T/W in centromere propagation and function in Xenopus egg extracts. Nucleus 6(2):133–143. doi:10.1080/19491034.2014.1003509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon MS, Hori T, Okada M, Fukagawa T (2007) CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. Mol Biol Cell 18(6):2155–2168. doi:10.1091/mbc.E07-01-0045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lara-Gonzalez P, Westhorpe FG, Taylor SS (2012) The spindle assembly checkpoint. Curr Biol 22(22):R966–R980. doi:10.1016/j.cub.2012.10.006

    Article  CAS  PubMed  Google Scholar 

  • Levy DL, Heald R (2015) Biological scaling problems and solutions in amphibians. Cold Spring Harb Perspect Biol 8(1):a019166. doi:10.1101/cshperspect.a019166

    Article  PubMed  CAS  Google Scholar 

  • Li R, Murray AW (1991) Feedback control of mitosis in budding yeast. Cell 66(3):519–531

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Gorbea C, Mahaffey D, Rechsteiner M, Benezra R (1997) MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc Natl Acad Sci USA 94(23):12431–12436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logsdon GA, Barrey EJ, Bassett EA, DeNizio JE, Guo LY, Panchenko T, Dawicki-McKenna JM, Heun P, Black BE (2015) Both tails and the centromere targeting domain of CENP-A are required for centromere establishment. J Cell Biol 208(5):521–531. doi:10.1083/jcb.201412011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohka MJ, Masui Y (1983) Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220(4598):719–721

    Article  CAS  PubMed  Google Scholar 

  • Lohka MJ, Masui Y (1984) Effects of Ca2+ ions on the formation of metaphase chromosomes and sperm pronuclei in cell-free preparations from unactivated Rana pipiens eggs. Dev Biol 103(2):434–442

    Article  CAS  PubMed  Google Scholar 

  • Lohka MJ, Maller JL (1985) Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts. J Cell Biol 101(2):518–523

    Article  CAS  PubMed  Google Scholar 

  • Lombillo VA, Stewart RJ, McIntosh JR (1995) Minus-end-directed motion of kinesin-coated microspheres driven by microtubule depolymerization. Nature 373(6510):161–164. doi:10.1038/373161a0

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Rechsteiner TJ, Richmond TJ (1999) Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol Biol 119:1–16. doi:10.1385/1-59259-681-9:1

    CAS  PubMed  Google Scholar 

  • Luo X, Tang Z, Xia G, Wassmann K, Matsumoto T, Rizo J, Yu H (2004) The Mad2 spindle checkpoint protein has two distinct natively folded states. Nat Struct Mol Biol 11(4):338–345. doi:10.1038/nsmb748

    Article  CAS  PubMed  Google Scholar 

  • Lupardus PJ, Van C, Cimprich KA (2007) Analyzing the ATR-mediated checkpoint using Xenopus egg extracts. Methods 41(2):222–231. doi:10.1016/j.ymeth.2006.07.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddox PS, Hyndman F, Monen J, Oegema K, Desai A (2007) Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J Cell Biol 176(6):757–763. doi:10.1083/jcb.200701065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masui Y, Markert CL (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 177(2):129–145. doi:10.1002/jez.1401770202

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Bogenhagen DF (1989) Repair of a synthetic abasic site in DNA in a Xenopus laevis oocyte extract. Mol Cell Biol 9(9):3750–3757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masumoto H, Ikeno M, Nakano M, Okazaki T, Grimes B, Cooke H, Suzuki N (1998) Assay of centromere function using a human artificial chromosome. Chromosoma 107(6–7):406–416. doi:10.1007/s004120050324

    Article  CAS  PubMed  Google Scholar 

  • McCleland ML, Kallio MJ, Barrett-Wilt GA, Kestner CA, Shabanowitz J, Hunt DF, Gorbsky GJ, Stukenberg PT (2004) The Vertebrate Ndc80 complex contains Spc24 and Spc25 homologs, which are required to establish and maintain kinetochore-microtubule attachment. Curr Biol 14(2):131–137. doi:10.1016/j.cub.2003.12.058

    Article  CAS  PubMed  Google Scholar 

  • McKinley KL, Cheeseman IM (2016) The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol 17(1):16–29. doi:10.1038/nrm.2015.5

    Article  CAS  PubMed  Google Scholar 

  • McKinley KL, Sekulic N, Guo LY, Tsinman T, Black BE, Cheeseman IM (2015) The CENP-L-N complex forms a critical node in an integrated meshwork of interactions at the centromere-kinetochore interface. Mol Cell 60(6):886–898. doi:10.1016/j.molcel.2015.10.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendiburo MJ, Padeken J, Fulop S, Schepers A, Heun P (2011) Drosophila CENH3 is sufficient for centromere formation. Science 334(6056):686–690. doi:10.1126/science.1206880

    Article  CAS  PubMed  Google Scholar 

  • Miake-Lye R, Kirschner MW (1985) Induction of early mitotic events in a cell-free system. Cell 41(1):165–175

    Article  CAS  PubMed  Google Scholar 

  • Milks KJ, Moree B, Straight AF (2009) Dissection of CENP-C-directed centromere and kinetochore assembly. Mol Biol Cell 20(19):4246–4255. doi:10.1091/mbc.E09-05-0378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MP, Asbury CL, Biggins S (2016) A TOG protein confers tension sensitivity to kinetochore-microtubule attachments. Cell 165(6):1428–1439. doi:10.1016/j.cell.2016.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minshull J, Sun H, Tonks NK, Murray AW (1994) A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell 79(3):475–486

    Article  CAS  PubMed  Google Scholar 

  • Mitchison TJ, Kirschner MW (1985a) Properties of the kinetochore in vitro. I. Microtubule nucleation and tubulin binding. J Cell Biol 101(3):755–765

    Article  CAS  PubMed  Google Scholar 

  • Mitchison TJ, Kirschner MW (1985b) Properties of the kinetochore in vitro. II. Microtubule capture and ATP-dependent translocation. J Cell Biol 101(3):766–777

    Article  CAS  PubMed  Google Scholar 

  • Moore MS, Blobel G (1992) The two steps of nuclear import, targeting to the nuclear envelope and translocation through the nuclear pore, require different cytosolic factors. Cell 69(6):939–950

    Article  CAS  PubMed  Google Scholar 

  • Moree B, Meyer CB, Fuller CJ, Straight AF (2011) CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J Cell Biol 194(6):855–871. doi:10.1083/jcb.201106079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray AW (1991) Chapter 30 cell cycle extracts. 36:581–605. doi:10.1016/s0091-679x(08)60298-8

  • Murray AW, Kirschner MW (1989) Cyclin synthesis drives the early embryonic-cell cycle. Nature 339(6222):275–280. doi:10.1038/339275a0

    Article  CAS  PubMed  Google Scholar 

  • Murray AW, Desai AB, Salmon ED (1996) Real time observation of anaphase in vitro. Proc Natl Acad Sci USA 93(22):12327–12332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagpal H, Hori T, Furukawa A, Sugase K, Osakabe A, Kurumizaka H, Fukagawa T (2015) Dynamic changes in the CCAN organization through CENP-C during cell-cycle progression. Mol Biol Cell 26(21):3768–3776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newmeyer DD, Forbes DJ (1988) Nuclear import can be separated into distinct steps in vitro, nuclear pore binding and translocation. Cell 52(5):641–653

    Article  CAS  PubMed  Google Scholar 

  • Newmeyer DD, Farschon DM, Reed JC (1994) Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79(2):353–364

    Article  CAS  PubMed  Google Scholar 

  • Newport J, Kirschner M (1982a) A major developmental transition in early xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell 30(3):675–686

    Article  CAS  PubMed  Google Scholar 

  • Newport J, Kirschner M (1982b) A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30(3):687–696

    Article  CAS  PubMed  Google Scholar 

  • Nicklas RB, Koch CA (1969) Chromosome micromanipulation. 3. Spindle fiber tension and the reorientation of mal-oriented chromosomes. J Cell Biol 43(1):40–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishino T, Takeuchi K, Gascoigne KE, Suzuki A, Hori T, Oyama T, Morikawa K, Cheeseman IM, Fukagawa T (2012) CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 148(3):487–501. doi:10.1016/j.cell.2011.11.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishino T, Rago F, Hori T, Tomii K, Cheeseman IM, Fukagawa T (2013) CENP-T provides a structural platform for outer kinetochore assembly. EMBO J 32(3):424–436. doi:10.1038/emboj.2012.348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obuse C, Yang H, Nozaki N, Goto S, Okazaki T, Yoda K (2004) Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase. Genes Cells 9(2):105–120

    Article  CAS  PubMed  Google Scholar 

  • Ohsumi K, Katagiri C (1991) Characterization of the ooplasmic factor inducing decondensation of and protamine removal from toad sperm nuclei—involvement of nucleoplasmin. Dev Biol 148(1):295–305. doi:10.1016/0012-1606(91)90338-4

    Article  CAS  PubMed  Google Scholar 

  • Ohzeki J, Nakano M, Okada T, Masumoto H (2002) CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol 159(5):765–775. doi:10.1083/jcb.200207112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohzeki J, Shono N, Otake K, Martins NM, Kugou K, Kimura H, Nagase T, Larionov V, Earnshaw WC, Masumoto H (2016) KAT7/HBO1/MYST2 regulates CENP-A chromatin assembly by antagonizing Suv39h1-mediated centromere inactivation. Dev Cell 37(5):413–427. doi:10.1016/j.devcel.2016.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates JR 3rd, Desai A, Fukagawa T (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8(5):446–457. doi:10.1038/ncb1396

    Article  CAS  PubMed  Google Scholar 

  • Palmer DK, O’Day K, Margolis RL (1990) The centromere specific histone CENP-A is selectively retained in discrete foci in mammalian sperm nuclei. Chromosoma 100(1):32–36. doi:10.1007/Bf00337600

  • Pesenti ME, Weir JR, Musacchio A (2016) Progress in the structural and functional characterization of kinetochores. Curr Opin Struct Biol 37:152–163. doi:10.1016/j.sbi.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  • Petrovic A, Pasqualato S, Dube P, Krenn V, Santaguida S, Cittaro D, Monzani S, Massimiliano L, Keller J, Tarricone A, Maiolica A, Stark H, Musacchio A (2010) The MIS12 complex is a protein interaction hub for outer kinetochore assembly. J Cell Biol 190(5):835–852. doi:10.1083/jcb.201002070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrovic A, Mosalaganti S, Keller J, Mattiuzzo M, Overlack K, Krenn V, De Antoni A, Wohlgemuth S, Cecatiello V, Pasqualato S, Raunser S, Musacchio A (2014) Modular assembly of RWD domains on the Mis12 complex underlies outer kinetochore organization. Mol Cell 53(4):591–605. doi:10.1016/j.molcel.2014.01.019

    Article  CAS  PubMed  Google Scholar 

  • Petrovic A, Keller J, Liu Y, Overlack K, John J, Dimitrova YN, Jenni S, van Gerwen S, Stege P, Wohlgemuth S, Rombaut P, Herzog F, Harrison SC, Vetter IR, Musacchio A (2016) Structure of the MIS12 complex and molecular basis of its interaction with CENP-C at human kinetochores. Cell 167 (4):1028–1040 e1015. doi:10.1016/j.cell.2016.10.005

  • Przewloka MR, Venkei Z, Bolanos-Garcia VM, Debski J, Dadlez M, Glover DM (2011) CENP-C is a structural platform for kinetochore assembly. Curr Biol 21(5):399–405. doi:10.1016/j.cub.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  • Rago F, Gascoigne KE, Cheeseman IM (2015) Distinct organization and regulation of the outer kinetochore KMN network downstream of CENP-C and CENP-T. Curr Biol 25(5):671–677. doi:10.1016/j.cub.2015.01.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieder CL, Cole RW, Khodjakov A, Sluder G (1995) The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 130(4):941–948. doi:10.1083/jcb.130.4.941

    Article  CAS  PubMed  Google Scholar 

  • Saitoh H, Cooke CA, Burgess WH, Earnshaw WC, Dasso M (1996) Direct and indirect association of the small GTPase ran with nuclear pore proteins and soluble transport factors: studies in Xenopus laevis egg extracts. Mol Biol Cell 7(9):1319–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salic A, Lee E, Mayer L, Kirschner MW (2000) Control of beta-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol Cell 5(3):523–532

    Article  CAS  PubMed  Google Scholar 

  • Sandall S, Severin F, McLeod IX, Yates JR 3rd, Oegema K, Hyman A, Desai A (2006) A Bir1-Sli15 complex connects centromeres to microtubules and is required to sense kinetochore tension. Cell 127(6):1179–1191. doi:10.1016/j.cell.2006.09.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandmann M, Talbert P, D Demidov, Kuhlmann M, Rutten T, Conrad U, Lermontova I (2017) Targeting of A. thaliana KNL2 to centromeres depends on the conserved CENPC-k motif in its C-terminus. Plant Cell. doi:10.1105/tpc.16.00720

    PubMed  PubMed Central  Google Scholar 

  • Sawin KE, Mitchison TJ (1991) Mitotic spindle assembly by two different pathways in vitro. J Cell Biol 112(5):925–940

    Article  CAS  PubMed  Google Scholar 

  • Screpanti E, De Antoni A, Alushin GM, Petrovic A, Melis T, Nogales E, Musacchio A (2011) Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Curr Biol 21(5):391–398. doi:10.1016/j.cub.2010.12.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538(7625):336–343. doi:10.1038/nature19840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamu CE, Murray AW (1992) Sister chromatid separation in frog egg extracts requires DNA topoisomerase II activity during anaphase. J Cell Biol 117(5):921–934

    Article  CAS  PubMed  Google Scholar 

  • Sheehan MA, Mills AD, Sleeman AM, Laskey RA, Blow JJ (1988) Steps in the assembly of replication-competent nuclei in a cell-free system from Xenopus eggs. J Cell Biol 106(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Shintomi K, Takahashi TS, Hirano T (2015) Reconstitution of mitotic chromatids with a minimum set of purified factors. Nat Cell Biol 17(8):1014–1023. doi:10.1038/ncb3187

    Article  CAS  PubMed  Google Scholar 

  • Sorger PK, Severin FF, Hyman AA (1994) Factors required for the binding of reassembled yeast kinetochores to microtubules in vitro. J Cell Biol 127(4):995–1008

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto K, Kuriyama K, Shibata A, Himeno M (1997) Characterization of internal DNA-binding and C-terminal dimerization domains of human centromere/kinetochore autoantigen CENP-C in vitro: role of DNA-binding and self-associating activities in kinetochore organization. Chromosome Res 5(2):132–141

    Article  CAS  PubMed  Google Scholar 

  • Walter JC, Arias EE (2004) Initiation of DNA replication in Xenopus egg extracts. Front Biosci 9:3029–3045

    Article  PubMed  Google Scholar 

  • Wan X, O’Quinn RP, Pierce HL, Joglekar AP, Gall WE, DeLuca JG, Carroll CW, Liu ST, Yen TJ, McEwen BF, Stukenberg PT, Desai A, Salmon ED (2009) Protein architecture of the human kinetochore microtubule attachment site. Cell 137(4):672–684. doi:10.1016/j.cell.2009.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weir JR, Faesen AC, Klare K, Petrovic A, Basilico F, Fischbock J, Pentakota S, Keller J, Pesenti ME, Pan D, Vogt D, Wohlgemuth S, Herzog F, Musacchio A (2016) Insights from biochemical reconstitution into the architecture of human kinetochores. Nature 537(7619):249–253. doi:10.1038/nature19333

    Article  CAS  PubMed  Google Scholar 

  • Westhorpe FG, Straight AF (2015) The centromere: epigenetic control of chromosome segregation during mitosis. Cold Spring Harb Perspect Biol 7(1):a015818. doi:10.1101/cshperspect.a015818

    Article  PubMed Central  CAS  Google Scholar 

  • Westhorpe FG, Fuller CJ, Straight AF (2015) A cell-free CENP-A assembly system defines the chromatin requirements for centromere maintenance. J Cell Biol 209(6):789–801. doi:10.1083/jcb.201503132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wigge PA, Kilmartin JV (2001) The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 152(2):349–360. doi:10.1083/jcb.152.2.349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Maresca TJ, Skoko D, Adams CD, Xiao B, Christensen MO, Heald R, Marko JF (2007) Micromanipulation studies of chromatin fibers in Xenopus egg extracts reveal ATP-dependent chromatin assembly dynamics. Mol Biol Cell 18(2):464–474. doi:10.1091/mbc.E06-09-0800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoda K, Ando S, Morishita S, Houmura K, Hashimoto K, Takeyasu K, Okazaki T (2000) Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. P Natl Acad Sci USA 97(13):7266–7271. doi:10.1073/pnas.130189697

    Article  CAS  Google Scholar 

  • Zhao Y, Chen RH (2006) Mps1 phosphorylation by MAP kinase is required for kinetochore localization of spindle-checkpoint proteins. Curr Biol 16(17):1764–1769. doi:10.1016/j.cub.2006.07.058

    Article  CAS  PubMed  Google Scholar 

  • Zinkowski RP, Meyne J, Brinkley BR (1991) The centromere-kinetochore complex: a repeat subunit model. J Cell Biol 113(5):1091–1110

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron F Straight .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

French, B.T., Straight, A.F. (2017). The Power of Xenopus Egg Extract for Reconstitution of Centromere and Kinetochore Function. In: Black, B. (eds) Centromeres and Kinetochores. Progress in Molecular and Subcellular Biology, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-58592-5_3

Download citation

Publish with us

Policies and ethics