Skip to main content

Citrullination Following Traumatic Brain Injury: A Mechanism for Ongoing Pathology Through Protein Modification

  • Chapter
  • First Online:
Protein Deimination in Human Health and Disease

Abstract

Traumatic brain injury (TBI) is a major public health issue in the USA, with over 1.7 million cases per year. At least 5.3 million Americans currently live with ongoing disability due to TBI (Walker and Tesco 2013). The long-term consequences of TBI can be complex and progressive: 10–15% of individuals diagnosed with mild TBI continue to suffer from persistent symptoms, while as many as 50% of patients with moderate TBI experience long-term dysfunction (Bales et al. 2009; Walker and Tesco 2013). In addition to the post-injury development of cognitive deficits in attention, memory, and executive function (Bales et al. 2009), a chronic inflammatory state can persist in the brain for months, and even years, following TBI (Opii et al. 2007; Piao et al. 2013). Despite the prevalence of these chronic dysfunctions following TBI, elucidating the mechanisms that underlie these symptoms has proven challenging. It is understood that the post-injury processes of TBI involve a primary and a secondary phase of injury. Primary injury occurs during the initial insult, resulting from the displacement of the physical structures within the brain. Secondary injury occurs over time and involves an interdependent series of cellular dysfunctions that persist long after injury (Giza and Hovda 2001; Nilsson et al. 1996; Park et al. 2008; Walker and Tesco 2013; Werner and Engelhard 2007). Currently, it is not well understood how the acute mechanical injury of TBI, and subsequent secondary injury processes, can result in serious long-term dysfunctions that can persist for years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

C:

Control

Ca2+ :

Calcium

CCI:

Controlled cortical impact

GFAP:

Glial fibrillary acidic protein

kDa:

Kilodalton

mAb:

Monoclonal anti-citrulline antibody

MBP:

Myelin basic protein

MS:

Multiple sclerosis

NMDA:

N-methyl-d-aspartate

PAD:

Peptidylarginine deiminase

TBI:

Traumatic brain injury

References

  • Acharya, N. K., Nagele, E. P., Han, M., Coretti, N. J., DeMarshall, C., Kosciuk, M. C., et al. (2012). Neuronal PAD4 expression and protein citrullination: Possible role in production of autoantibodies associated with neurodegenerative disease. Journal of Autoimmunity, 38, 369–380.

    Article  CAS  PubMed  Google Scholar 

  • Adamus, G., Bonnah, R., Brown, L., & David, L. (2013). Detection of autoantibodies against heat shock proteins and collapsin response mediator proteins in autoimmune retinopathy. BMC Ophthalmology, 13, 48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderton, S. M. (2004). Post-translational modifications of self antigens: Implications for autoimmunity. Current Opinion in Immunology, 16(6), 753–758.

    Article  CAS  PubMed  Google Scholar 

  • Anzilotti, C., Pratesi, F., Tommasi, C., & Migliorini, P. (2010). Peptidylarginine deiminase 4 and citrullination in health and disease. Autoimmunity Reviews, 9(3), 158–160.

    Article  CAS  PubMed  Google Scholar 

  • Asaga, H., & Ishigami, A. (2001). Protein deimination in the rat brain after kainate administration: Citrulline-containing proteins as a novel marker of neurodegeneration. Neuroscience Letters, 299, 5–8.

    Article  CAS  PubMed  Google Scholar 

  • Bales, J. W., Wagner, A. K., Kline, A. E., & Dixon, C. E. (2009). Persistent cognitive dysfunction after traumatic brain injury: A dopamine hypothesis. Neuroscience and Biobehavioral Reviews, 33(7), 981–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry, C., Ley, E. J., Tillou, A., Cryer, G., Marguilies, D. R., & Salim, A. (2009). The effect of gender on patients with moderate to severe head injuries. Journal of Trauma – Injury, Infection &. Critical Care, 67(5), 950–953.

    Article  Google Scholar 

  • Bhattacharya, S. K., Crabb, J. S., Bonilha, V. L., Gu, X., Takahara, H., & Crabb, J. W. (2006). Proteomics implicates peptidyl arginine deiminase 2 and optic nerve citrullination in glaucoma pathogenesis. Investigative Ophthalmology & Visual Science, 47(6), 2508–2514.

    Article  Google Scholar 

  • Bradford, C., Nicholas, A. P., Woodroofe, N., & Cross, A. K. (2002). Chapter 10: Deimination in multiple sclerosis and experimental autoimmune encephalomyelitis. In A. Nicholas & S. Bhattacharya (Eds.), Protein deimination in human health and disease (pp. 165–185). New York: Springer.

    Google Scholar 

  • Bradford, C. M., Ramos, I., Cross, A. K., Haddock, A. K., McQuaid, S., Nicholas, A. P., & Woodroofe, M. N. (2014). Localisation of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis. Journal of Neuroimmunology, 273(1–2), 85–95.

    Article  CAS  PubMed  Google Scholar 

  • Chirivi, R. G. S., van Rosmalen, J. W. G., Jenniskens, G. J., Pruijn, G. J., & Raats, J. M. H. (2013). Citrullination: A target for disease intervention in multiple sclerosis and other inflammatory diseases? Journal of Clinical and Cellular Immunology, 4, 146. doi:10.4172/2155-9899.1000146.

    Article  Google Scholar 

  • Chung, Y. H., Shin, C. M., Kim, M. J., & Cha, C. I. (2001). Enhanced expression of L-type Ca2+ channels in reactive astrocytes after ischemic injury in rats. Neuroscience Letters, 302, 93–96.

    Article  CAS  PubMed  Google Scholar 

  • Curis, E., Nicolis, I., Moinard, C., Osowska, S., Zerrouk, N., Bénazeth, S., & Cynober, L. (2005). Almost all about citrulline in mammals. Amino Acids, 29(3), 177–205.

    Article  CAS  PubMed  Google Scholar 

  • Dalle-Donne, I., Aldini, G., Carini, M., Colombo, R., Rossi, R., & Milzani, A. (2006). Protein carbonylation, cellular dysfunction, and disease progression. Journal of Cellular and Molecular Medicine, 10(2), 389–406.

    Article  CAS  PubMed  Google Scholar 

  • Duffy, S., & MacVicar, B. A. (1996). In vitro ischemia promotes calcium influx and intracellular calcium release in hippocampal astrocytes. The Journal of Neuroscience, 16(1), 71–81.

    CAS  PubMed  Google Scholar 

  • Fineman, I., Hovda, D. A., Smith, M., Yoshino, A., & Becker, D. P. (1993). Concussive brain injury is associated with a prolonged accumulation of calcium: A 45Ca autoradiographic study. Brain Research, 624, 94–102.

    Article  CAS  PubMed  Google Scholar 

  • Floyd, C. L., Gorin, F. A., & Lyeth, B. G. (2005). Mechanical strain injury increases intracellular sodium and reverses Na+/Ca2+ exchange in cortical astrocytes. Glia, 51(1), 35–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giza, C. C., & Hovda, D. A. (2001). The neurometabolic cascade of concussion. Journal of Athletic Training, 36(3), 228–235.

    PubMed  PubMed Central  Google Scholar 

  • Goswasser, Z., Cohen, M., & Keren, O. (1998). Female TBI patients recover better than males. Brain Injury, 12, 805–808.

    Article  Google Scholar 

  • Gould, R. M., Freund, C. M., Palmer, F., & Feinstein, D. L. (2000). Messenger RNAs located in myelin sheath assembly sites. Journal of Neurochemistry, 75(5), 1834–1844.

    Article  CAS  PubMed  Google Scholar 

  • György, B., Tóth, E., Tarcsa, E., Falus, A., & Buzás, E. I. (2006). Citrullination: A posttranslational modification in health and disease. The International Journal of Biochemistry & Cell Biology, 38, 1662–1677.

    Article  Google Scholar 

  • Haun, S. E., Murphy, E. J., Bates, C. M., & Horrocks, L. A. (1992). Extracellular calcium is a mediator of astroglial injury during combined glucose-oxygen deprivation. Brain Research, 593, 45–50.

    Article  CAS  PubMed  Google Scholar 

  • Hensvold, A. H., Reynisdottir, G., & Catrin, A. I. (2002). Chapter 2: From citrullination to specific immunity and disease in rheumatoid arthritis. In A. Nicholas & S. Bhattacharya (Eds.), Protein deimination in human health and disease (pp. 25–40). New York: Springer.

    Google Scholar 

  • Ishigami, A., & Maruyama, N. (2010). Importance of research on peptidylarginine deiminase and citrullinated proteins in age-related disease. Geriatrics & Gerontology International, 10(Suppl 1), S53–S58.

    Article  Google Scholar 

  • Ishigami, A., Ohsawa, T., Hiratsuka, M., Taguchi, H., Kobayashi, S., Saito, Y., et al. (2005). Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer’s disease. Journal of Neuroscience Research, 80(1), 120–128.

    Article  CAS  PubMed  Google Scholar 

  • Jang, B., Kim, E., Choi, J. K., Jin, J. K., Kim, J. I., Ishigami, A., et al. (2008). Accumulation of citrullinated proteins by up-regulated peptidylarginine deiminase 2 in brains of scrapie-infected mice. The American Journal of Pathology, 173(4), 1129–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang, B., Shin, H. Y., Choi, J. K., Nguyen du, P. T., Jeong, B. H., Ishigami, A., et al. (2011). Subcellular localization of peptidylarginine deiminase 2 and citrullinated proteins in brains of scrapie-infected mice: Nuclear localization of PAD2 and membrane fraction-enriched citrullinated proteins. Journal of Neuropathology and Experimental Neurology, 70(2), 116–124.

    Article  CAS  PubMed  Google Scholar 

  • Kinloch, A., Tatzer, V., Wait, R., Peston, D., Lundberg, K., Donatien, P., et al. (2005a). Identification of citrullinated α-enolase as a candidate autoantigen in rheumatoid arthritis. Arthritis Research & Therapy, 7, R1421–R1429.

    Article  CAS  Google Scholar 

  • Kinloch, A., Tatzer, V., Wait, R., Peston, D., Lundberg, K., Donatien, P., et al. (2005b). Identification of citrullinated α-enolase as a candidate autoantigen in rheumatoid arthritis. Arthritis Research & Therapy, 7(6), R1421–R1429.

    Article  CAS  Google Scholar 

  • Lam, G. (2006). Round 4: Citrullinated proteins, peptidylarginine deiminase (PAD), and rheumatoid arthritis. Baltimore, MD: Johns Hopkins, Arthritis Center.

    Google Scholar 

  • Lange, S., Rocha-Ferreira, E., Thei, L., Mawjee, P., Bennett, K., Thompson, P. R., et al. (2014). Peptidylarginine deiminases: Novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates. Journal of Neurochemistry, 130(4), 555–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarus, R. C. (2015). Protein modification: A proposed mechanism for the long-term pathogenesis of traumatic brain injury. Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814. Retrieved from http://cdm16005.contentdm.oclc.org/cdm/ref/collection/p15459coll1/id/117618

  • Lazarus Rachel, C., Buonora John, E., Flora Michael, N., Freedy James, G., Holstein Gay, R., Martinelli Giorgio, P., Jacobowitz David, M., & Mueller Gregory, P. (2015). Protein citrullination: A proposed mechanism for pathology in traumatic brain injury. Frontiers in Neurology, 6, 204. doi:10.3389/fneur.2015.00204.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarus, R. C., Buonora, J. E., Jacobowitz, D. M., & Mueller, G. P. (2015). Protein carbonylation after traumatic brain injury: Cell specificity, regional susceptibility, and gender differences. Free Radical Biology and Medicine, 78, 89–100.

    Article  CAS  PubMed  Google Scholar 

  • McIntosh, T. K., Saatman, K. E., & Raghupathi, R. (1997). Calcium and the pathogenesis of traumatic CNS injury: Cellular and molecular mechanisms. The Neuroscientist, 3(3), 169–175.

    Article  CAS  Google Scholar 

  • Murinson, B. B., & Guarnaccia, J. B. (2008). Stiff-person syndrome with amphiphysin antibodies: Distinctive features of a rare disease. Neurology, 71(24), 1955–1958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musse, A. A., Li, Z., Ackerly, C. A., Bienzle, D., Lei, H., Poma, R., et al. (2008). Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. Disease Models & Mechanisms, 1(4), 229–240.

    Article  CAS  Google Scholar 

  • Nicholas, A. P. (2010). Dual immunofluorescence study of citrullinated proteins in Parkinson diseased substantia nigra. Neuroscience Letters, 495, 26–29.

    Article  Google Scholar 

  • Nicholas, A. P., Sambandam, T., Echols, J. D., & Tourtellotte, W. W. (2004). Increased citrullinated glial fibrillary acidic protein in secondary progressive multiple sclerosis. The Journal of Comparative Neurology, 473(1), 128–136.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas, A. P., Sambandam, T., Echols, J. D., & Barnum, S. R. (2005). Expression of Citrullinated proteins in murine experimental autoimmune encephalomyelitis. The Journal of Comparative Neurology, 486, 254–266.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, P., Laursen, H., Hillered, L., & Hansen, A. J. (1996). Calcium movements in traumatic brain injury: The role of glutamate receptor-operated ion channels. Journal of Cerebral Blood Flow & Metabolism, 16, 262–270.

    Article  CAS  Google Scholar 

  • Okonkwo, D. O., Yue, J. K., Puccio, A. M., Panczykowski, D. M., Inoue, T., McMahon, P. J., et al. (2013). GFAP-BDP as an acute diagnostic marker in traumatic brain injury: Results from the prospective transforming research and clinical knowledge in traumatic brain injury study. Journal of Neurotrauma, 30(17), 1490–1497.

    Article  PubMed  PubMed Central  Google Scholar 

  • Opii, W. O., Nukal, V. N., Sultana, R., Pandya, J. D., Day, K. M., Marchant, M. L., et al. (2007). Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury. Journal of Neurotrauma, 24(5), 772–789.

    Article  PubMed  Google Scholar 

  • Park, E., Bell, J. D., & Baker, A. J. (2008). Traumatic brain injury: Can the consequences be stopped? CMAJ, 178(9), 1163–1170.

    Article  PubMed  PubMed Central  Google Scholar 

  • Piao, C. S., Stoica, B. A., Wu, J., Sabirzhanov, B., Zhao, Z., Cabatbat, R., et al. (2013). Combined inhibition of cell death induced by apoptosis inducing factor and caspases provides additive neuroprotection in experimental traumatic brain injury. Neurobiology of Disease, 46(3), 745–758.

    Article  Google Scholar 

  • Raijmakers, R., Vogelzangs, J., Croxford, J. L., Wesseling, P., van Venrooij, W. J., & Pruijn, G. J. (2005). Citrullination of central nervous system proteins during the development of experimental autoimmune encephalomyelitis. The Journal of Comparative Neurology, 486(3), 243–253.

    Article  PubMed  Google Scholar 

  • Ray, S. K., Dixon, C. E., & Banik, N. L. (2002). Molecular mechanisms in the pathogenesis of traumatic brain injury. Histology and Histopathology, 17, 1137–1152.

    CAS  PubMed  Google Scholar 

  • Rolls, A., Shechter, R., & Schwartz, M. (2009). The bright side of the glial scar in CNS repair. Nature Reviews Neuroscience, 10, 235–241.

    Article  CAS  PubMed  Google Scholar 

  • Rondas, D., Crèvecoeur, I., D’Hertog, W., Ferreira, G. B., Staes, A., Garg, A. D., et al. (2014). Citrullinated glucose-regulated protein 78 is an autoantigen in type 1 diabetes. Diabetes, 64(2), 573–586.

    Article  PubMed  Google Scholar 

  • Roof, R. L., Hoffamn, S. W., & Stein, D. G. (1997). Progesterone protects against lipid peroxidation following traumatic brain injury in rats. Molecular and Clinical Neuropathology, 31(1), 1–11.

    Article  CAS  Google Scholar 

  • Rorhbach, A. S., Arandjelovic, S., & Mowen, K. A. (2002). Physiological pathways of PAD activation and citrullinated epitope generation. In A. Nicholas & S. Bhattacharya (Eds.), Protein deimination in human health and disease (pp. 1–24). New York: Springer.

    Google Scholar 

  • Rzigalinski, B. A., Weber, J. T., Willoughby, K. A., & Ellis, E. F. (1998). Intracellular free calcium dynamics in stretch-injured astrocytes. Journal of Neurochemistry, 70(6), 2377–2385.

    Article  CAS  PubMed  Google Scholar 

  • Spengler, J., & Schell-Toellner, D. (2014). Neutrophils and their contributions to autoimmunity in rheumatoid arthritis. In A. Nicholas & S. Bhattacharya (Eds.), Protein deimination in human health and disease (pp. 97–111). New York: Springer.

    Chapter  Google Scholar 

  • Sun, D. A., Deshpande, L. S., Sombati, S., Baranova, A., Wilson, M. S., Hamm, R. J., & DeLorenzo, R. J. (2008). Traumatic brain injury causes a long-lasting calcium (Ca2+)-plateau of elevated intracellular Ca levels and altered Ca2+ homeostatic mechanisms in hippocampal neurons surviving brain injury. The European Journal of Neuroscience, 27(7), 1659–1672.

    Article  PubMed  PubMed Central  Google Scholar 

  • Szydlowskaa, K., & Tymianskia, M. (2010). Calcium, ischemia and excitotoxicity. Cell Calcium, 47(2), 122–129.

    Article  Google Scholar 

  • Tranquill, L. R., Cao, L., Ling, N., Kalbacher, H., Martin, R. M., & Whitaker, J. N. (2000). Enhanced T cell responsiveness to citrulline-containing myelin basic protein in multiple sclerosis patients. Multiple Sclerosis, 6, 220–225.

    Article  CAS  PubMed  Google Scholar 

  • Vossenaar, E. R., Radstake, T. R. D., van der Heijden, A., van Mansum, M. A. M., Dieteren, C., de Rooij, D. J., et al. (2004). Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages. Annals of the Rheumatic Diseases, 63, 373–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker, K. R., & Tesco, G. (2013). Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Frontiers in Aging Neuroscience, 5, 29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, S., & Wang, Y. (2013). Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochimica et Biophysica Acta, 1829, 1126–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber, J. T. (2012). Altered calcium signaling following traumatic brain injury. Frontiers in Pharmacology, 3(60), 1–16.

    Google Scholar 

  • Werner, C., & Engelhard, K. (2007). Pathophysiology of traumatic brain injury. British Journal of Anaesthesia, 99(1), 4–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Zoltewicz, J. S., Mondello, S., Newsom, K. J., Yang, Z., Yang, B., et al. (2014). Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PloS One, 9(3), e92698.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y., Tian, X., & Li, Z. G. (2010). Impact of citrullination upon antigenicity of fibrinogen. Zhonghua Yi Xue Za Zhi, 90(9), 628–632.

    CAS  PubMed  Google Scholar 

  • Zoltewicz, J. S., Scharf, D., Yang, B., Chawla, A., Newsom, K. J., & Fang, L. (2012). Characterization of antibodies that detect human GFAP after traumatic brain injury. Biomarker Insights, 7, 71–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Support for this work included a grant from the Defense Medical Research and Development Program (D61_I_10_J6_152) and Department of Defense in the Center for Neuroscience and Regenerative Medicine (G1703D) as well as funding from the Uniformed Services University of the Health Sciences (T0702554 and R07028414).

Disclosure

Some of the findings presented here have appeared in publication (Lazarus Rachel et al. 2015) and in a PhD dissertation (RCL) which is available by public access at http://cdm16005.contentdm.oclc.org/cdm/ref/collection/p15459coll1/id/117618 (Lazarus 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory P. Mueller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lazarus, R.C. et al. (2017). Citrullination Following Traumatic Brain Injury: A Mechanism for Ongoing Pathology Through Protein Modification. In: Nicholas, A., Bhattacharya, S., Thompson, P. (eds) Protein Deimination in Human Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-58244-3_16

Download citation

Publish with us

Policies and ethics