Skip to main content

Nanobiohybrid Preparation

  • Chapter
  • First Online:
Nanohybrid Catalyst based on Carbon Nanotube

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Enzyme immobilization onto nanomaterials has been implemented in various fields such as water decontamination, sensor developments, biotransformation, therapeutics, foods processing, biofuel production, and so on. In this study, we aimed to covalently immobilize 3,4-POD onto H2SO4 and HNO3 functionalized (F)-MWCNTs to birth Nanobiohybrid catalyst. Images of SEM, TEM, and AFM along with UV/vis and IR spectroscopic data demonstrated that the 3,4-POD was successfully immobilized onto F-MWCNT surfaces. CD spectroscopy data showed that the Nanobiohybrid undergone 44% of relative structural changes to its free 3,4-POD configurations. Optimizing immobilization parameters, such as the use of cross-linker, time incubation, and different concentrations of 3,4-POD loading helped us to attach maximum 1060 µg of 3,4-POD/mg of MWCNT. This paves the way for the development of effective Nanobiohybrid that might have the imminent potentiality to purify 3,4-DHBA contaminated wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Future Readings

  1. Asuri, P., Karajanagi, S.S., Sellitto, E., Kim, D.Y., Kane, R.S., Dordick, J.S.: Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnol. Bioeng. 95(5), 804–811 (2006)

    Article  Google Scholar 

  2. Babich, H., Sedletcaia, A., Kenigsberg, B.: In vitro cytotoxicity of protocatechuic acid to cultured human cells from oral tissue: Involvement in oxidative stress. Pharmacol. Toxicol. 91(5), 245–253 (2002)

    Article  Google Scholar 

  3. Bayat, S., Tejo, B.A., Abdulmalek, E., Salleh, A.B., Normi, Y.M., Rahman, M.B.A.: Rational design of mimetic peptides based on aldo-ketoreductase enzyme as asymmetric organocatalysts in aldol reactions. RSC Advances 4(73), 38859–38868 (2014)

    Article  Google Scholar 

  4. Berova, N., Nakanishi, K., Woody, R.: Circular Dichroism: Principles and Applications. Wiley, US (2000)

    Google Scholar 

  5. Blanchard, N., Hatton, R., Silva, S.: Tuning the work function of surface oxidised multi-wall carbon nanotubes via cation exchange. Chem. Phys. Lett. 434(1), 92–95 (2007)

    Article  Google Scholar 

  6. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1), 248–254 (1976)

    Article  Google Scholar 

  7. Brena, B., González-Pombo, P., Batista-Viera, F.: Immobilization of Enzymes: A Literature Survey. In: Immobilization of Enzymes and Cells, pp 15–31. Springer, Berlin (2013)

    Google Scholar 

  8. Bubinas, A., Giedraitytė, G., Kalėdienė, L.: Protocatechuate 3, 4-dioxygenase from thermophilic Geobacillus sp. strain. Biologija 53(1), (2007)

    Google Scholar 

  9. Bull, C., Ballou, D.: Purification and properties of protocatechuate 3, 4-dioxygenase from Pseudomonas putida. A new iron to subunit stoichiometry. J. Biol. Chem. 256(24), 12673–12680 (1981)

    Google Scholar 

  10. Cang-Rong, J.T., Pastorin, G.: The influence of carbon nanotubes on enzyme activity and structure: Investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies. Nanotechnology 20(25), 255102 (2009)

    Article  Google Scholar 

  11. Chen, Y., Dilworth, M., Glenn, A.: Aromatic metabolism in Rhizobium trifolii—protocatechuate 3, 4-dioxygenase. Arch. Microbiol. 138(3), 187–190 (1984)

    Article  Google Scholar 

  12. Coates, J.: Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of analytical chemistry (2000)

    Google Scholar 

  13. Corry, B.: Water and ion transport through functionalised carbon nanotubes: Implications for desalination technology. Energy Environ. Sci. 4(3), 751–759 (2011)

    Article  Google Scholar 

  14. Das, R., Abd Hamid, S.B., Ali, M.E., Annuar, M.S.M., Samsudin, E.M.B., Bagheri, S.: Covalent Functionalization Schemes for Tailoring Solubility of Multi-Walled Carbon Nanotubes in Water and Acetone Solvents. Science of Advanced Materials In Press (2015)

    Google Scholar 

  15. Das, R., Abd Hamid, S.B., Ali, M.E., Ismail, A.F., Annuar, M.S.M., Ramakrishna, S.: Multifunctional carbon nanotubes in water treatment: The present, past and future. Desalination 354(0), 160–179 (2014). doi:http://dx.doi.org/10.1016/j.desal.2014.09.032

  16. Das, R., Ali, M.E., Bee Abd Hamid, S., Annuar, M., Ramakrishna, S.: Common wet chemical agents for purifying multiwalled carbon nanotubes. J. Nanomaterials 2014, 237 (2014)

    Google Scholar 

  17. Das, R., Ali, M.E., Bee Abd Hamid, S., Annuar, M., Ramakrishna, S.: Multifunctional carbon nanotubes in water treatment: The present, past and future. Desalination 354,160–179 (2014)

    Google Scholar 

  18. Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., Galiotis, C.: Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6), 833–840 (2008)

    Article  Google Scholar 

  19. Di Nardo, G., Roggero, C., Campolongo, S., Valetti, F., Trotta, F., Gilardi, G.: Catalytic properties of catechol 1, 2-dioxygenase from Acinetobacter radioresistens S13 immobilized on nanosponges. Dalton Trans. 33, 6507–6512 (2009)

    Article  Google Scholar 

  20. Dos Reis, G., Dias, I., De Santana, H., Duarte, J., Laureto, E., Di Mauro, E., Da Silva, M.: Analysis of optical properties of poly (3-methylthiophene)(P3MT) electrochemically synthesized. Synth. Met. 161(3), 340–347 (2011)

    Article  Google Scholar 

  21. Esteve, W., Budzinski, H., Villenave, E.: Relative rate constants for the heterogeneous reactions of OH, NO2 and NO radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 1: PAHs adsorbed on 1–2 μm calibrated graphite particles. Atmos. Environ. 38(35), 6063–6072 (2004)

    Article  Google Scholar 

  22. Feng, W., Ji, P.: Enzymes immobilized on carbon nanotubes. Biotechnol. Adv. 29(6), 889–895 (2011)

    Article  Google Scholar 

  23. Feng, Y., Zhang, H., Hou, Y., McNicholas, T.P., Yuan, D., Yang, S., Ding, L., Feng, W., Liu, J.: Room temperature purification of few-walled carbon nanotubes with high yield. ACS Nano. 2(8), 1634–1638 (2008)

    Article  Google Scholar 

  24. Fujisawa, H., Hayaishi, O.: Protocatechuate 3, 4-dioxygenase I. Crystallization and characterization. J. Biol. Chem. 243(10), 2673–2681 (1968)

    Google Scholar 

  25. Gao, Y., Kyratzis, I.: Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide—A critical assessment. Bioconjugate Chem. 19(10), 1945–1950 (2008)

    Article  Google Scholar 

  26. Goh, W.J., Makam, V.S., Hu, J., Kang, L., Zheng, M., Yoong, S.L., Udalagama, C.N., Pastorin, G.: Iron oxide filled magnetic carbon nanotube-enzyme conjugates for recycling of amyloglucosidase: Toward useful applications in biofuel production process. Langmuir 28(49), 16864–16873 (2012)

    Article  Google Scholar 

  27. Grady, Jr. C.L., Daigger, G.T., Love, N.G., Filipe, C.D., Leslie Grady, C.: Biological wastewater treatment, vol. 3. IWA Publishing (2011)

    Google Scholar 

  28. Guzik, U., Hupert-Kocurek, K., Krysiak, M., Wojcieszyńska, D.: Degradation Potential of Protocatechuate 3, 4-Dioxygenase from Crude Extract of Stenotrophomonas maltophilia Strain KB2 Immobilized in Calcium Alginate Hydrogels and on Glyoxyl Agarose. BioMed research international 2014 (2014)

    Google Scholar 

  29. Guzik, U., Hupert-Kocurek, K., Wojcieszyńska, D.: Intradiol dioxygenases—The key enzymes in xenobiotics degradation (2013)

    Google Scholar 

  30. Hammer, A., Stolz, A., Knackmuss, H.-J.: Purification and characterization of a novel type of protocatechuate 3, 4-dioxygenase with the ability to oxidize 4-sulfocatechol. Arch. Microbiol. 166(2), 92–100 (1996)

    Article  Google Scholar 

  31. Hemmrich, K., Salber, J., Meersch, M., Wiesemann, U., Gries, T., Pallua, N., Klee, D.: Three-dimensional nonwoven scaffolds from a novel biodegradable poly (ester amide) for tissue engineering applications. J. Mater. Sci.—Mater. Med. 19(1), 257–267 (2008)

    Article  Google Scholar 

  32. Huang, W., Taylor, S., Fu, K., Lin, Y., Zhang, D., Hanks, T.W., Rao, A.M., Sun, Y.-P.: Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett. 2(4), 311–314 (2002)

    Article  Google Scholar 

  33. Hwang, E.T., Gu, M.B.: Enzyme stabilization by nano/microsized hybrid materials. Eng. Life Sci. 13(1), 49–61 (2013)

    Article  Google Scholar 

  34. Jabs, A.: Determination of secondary structure in proteins by fourier transform infrared spectroscopy (FTIR). From the IMB Jena Image Library web page http://imb-jenade/ImgLibDoc/ftir/IMAGE_FTIR.html (2005). Accessed 1 Aug 2005

  35. Jarmelo, S., Reva, I., Lapinski, L., Nowak, M., Fausto, R.: Matrix-isolated diglycolic anhydride: Vibrational spectra and photochemical reactivity. J. Phys. Chem. A 112(44), 11178–11189 (2008)

    Article  Google Scholar 

  36. Jiang, K., Schadler, L.S., Siegel, R.W., Zhang, X., Zhang, H., Terrones, M.: Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation. J. Mater. Chem. 14(1), 37–39 (2004)

    Article  Google Scholar 

  37. Jonoobi, M., Mathew, A.P., Abdi, M.M., Makinejad, M.D., Oksman, K.: A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J. Polym. Environ. 20(4), 991–997 (2012)

    Article  Google Scholar 

  38. Karajanagi, S.S., Vertegel, A.A., Kane, R.S., Dordick, J.S.: Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 20(26), 11594–11599 (2004)

    Article  Google Scholar 

  39. Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R., Ramakrishna, S.: A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5(8), 8075–8109 (2012)

    Article  Google Scholar 

  40. Koppisch, A.T., Fox, D.T., Hotta, K., Welsh, J.D.: Production of industrially relevant compounds in prokaryotic organisms. Google Patents (2011)

    Google Scholar 

  41. Li, J-h, R-y, Hong, G-h, Luo, Zheng, Y., H-z, Li, D-g, Wei: An easy approach to encapsulating Fe3O4 nanoparticles in multiwalled carbon nanotubes. New Carbon Mater. 25(3), 192–198 (2010)

    Article  Google Scholar 

  42. Liu, Y., Qu, X., Guo, H., Chen, H., Liu, B., Dong, S.: Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes–chitosan composite. Biosens. Bioelectron. 21(12), 2195–2201 (2006)

    Article  Google Scholar 

  43. Ma, P.-C., Kim. J.-K.: Carbon nanotubes for polymer reinforcement. CRC Press (2011)

    Google Scholar 

  44. Matsuura, K., Saito, T., Okazaki, T., Ohshima, S., Yumura, M., Iijima, S.: Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chem. Phys. Lett. 429(4), 497–502 (2006)

    Article  Google Scholar 

  45. Munge, B., Guodong, L., Greg, C., Joseph, W.: Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies. Anal. Chem. 77(14), 4662–4666 (2005)

    Article  Google Scholar 

  46. Mugdha, A., Usha, M.: Enzymatic Treatment of wastewater containing dyestuffs using different delivery systems. Sci. Rev. Chem. Communi. 2(1), 31–40, (2012). ISSN 2277 2669

    Google Scholar 

  47. Neun, D.J., Penn, A., Snyder, C.A.: Evidence for strain-specific differences in benzene toxicity as a function of host target cell susceptibility. Arch. Toxicol. 66(1), 11–17 (1992)

    Article  Google Scholar 

  48. Ohlendorf, D.H., Orville, A.M., Lipscomb, J.D.: Structure of Protocatechuate 3, 4-Dioxygenase from Pseudomonas aeruginosa at 2.15 Å Resolution. J. Mol. Biol. 244(5), 586–608 (1994)

    Article  Google Scholar 

  49. Ornston, L.: The conversion of Catechol and Protocatechuate to β-Ketoadipate by Pseudomonas putida II. Enzymes of the protocatechuate pathway. J. Biol. Chem. 241(16), 3787–3794 (1966)

    Google Scholar 

  50. Orville, A.M., Elango, N., Lipscomb, J.D., Ohlendorf, D.H.: Structures of competitive inhibitor complexes of protocatechuate 3, 4-dioxygenase: Multiple exogenous ligand binding orientations within the active site. Biochemistry 36(33), 10039–10051 (1997)

    Article  Google Scholar 

  51. Pavlidis, I.V., Vorhaben, T., Tsoufis, T., Rudolf, P., Bornscheuer, U.T., Gournis, D., Stamatis, H.: Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Bioresour. Technol. 115, 164–171 (2012)

    Article  Google Scholar 

  52. Pedrosa, V.A., Paliwal, S., Balasubramanian, S., Nepal, D., Davis, V., Wild, J., Ramanculov, E., Simonian, A.: Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes. Colloids Surf. B: Biointerfaces 77(1), 69–74 (2010)

    Article  Google Scholar 

  53. Peng, Y., Liu, H.: Effects of oxidation by hydrogen peroxide on the structures of multiwalled carbon nanotubes. Ind. Eng. Chem. Res. 45(19), 6483–6488 (2006)

    Article  Google Scholar 

  54. Qiu, Y., Park, K.: Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53(3), 321–339 (2001)

    Article  Google Scholar 

  55. Raussens, V., Ruysschaert, J.-M., Goormaghtigh, E.: Protein concentration is not an absolute prerequisite for the determination of secondary structure from circular dichroism spectra: A new scaling method. Anal. Biochem. 319(1), 114–121 (2003)

    Article  Google Scholar 

  56. Shieh, Y.-T., Liu, G.-L., Wu, H.-H., Lee, C.-C.: Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media. Carbon 45(9), 1880–1890 (2007)

    Article  Google Scholar 

  57. Shimizu, A., Tanaka, K., Fujimori, M.: Abatement technologies for N2O emissions in the adipic acid industry. Chemosphere-global Change Sci 2(3), 425–434 (2000)

    Article  Google Scholar 

  58. Silva, ASd, Jacques, R.J.S., Andreazza, R., Bento, F.M., Camargo, FAdO: The effects of trace elements, cations, and environmental conditions on protocatechuate 3, 4-dioxygenase activity. Scientia Agricola 70(2), 68–73 (2013)

    Article  Google Scholar 

  59. Smith, B., Wepasnick, K., Schrote, K.E., Cho, H.-H., Ball, W.P., Fairbrother, D.H.: Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: A structure—property relationship. Langmuir 25(17), 9767–9776 (2009)

    Article  Google Scholar 

  60. Smith, P., Krohn, R.I., Hermanson, G., Mallia, A., Gartner, F., Provenzano, M., Fujimoto, E., Goeke, N., Olson, B., Klenk, D.: Measurement of protein using bicinchoninic acid. Anal. Biochem. 150(1), 76–85 (1985)

    Article  Google Scholar 

  61. Stanier, R., Ingraham, J.: Protocatechuic acid oxidase. J. Biol. Chem. 210(2), 799–808 (1954)

    Google Scholar 

  62. Subrizi, F., Crucianelli, M., Grossi, V., Passacantando, M., Pesci, L., Saladino, R.: Carbon nanotubes as activating tyrosinase supports for the selective synthesis of catechols. ACS Catalysis 4(3), 810–822 (2014)

    Article  Google Scholar 

  63. Suma, Y., Kim, D., Lee, J.W., Park, K.Y., Kim, H.S.: Degradation of catechol by immobilized hydroxyquinol 1, 2-dioxygenase (1, 2-HQD) onto single-walled carbon nanotubes. In: Proceedings of the International Conference on Chemical, Environmental Science and Engineering (ICEEBS’12) (2012)

    Google Scholar 

  64. Tang, M., Dou, H., Sun, K.: One-step synthesis of dextran-based stable nanoparticles assisted by self-assembly. Polymer 47(2), 728–734 (2006). doi:10.1016/j.polymer.2005.11.091

    Article  Google Scholar 

  65. Tran, D.N., Balkus Jr., K.J.: Perspective of recent progress in immobilization of enzymes. Acs Catalysis 1(8), 956–968 (2011)

    Article  Google Scholar 

  66. Verma, M.L., Barrow, C.J., Puri, M.: Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl. Microbiol. Biotechnol. 97(1), 23–39 (2013)

    Article  Google Scholar 

  67. Vetting, M.W., D’Argenio, D.A., Ornston, L.N., Ohlendorf, D.H.: Structure of Acinetobacter strain ADP1 protocatechuate 3, 4-dioxygenase at 2.2 Å resolution: Implications for the mechanism of an intradiol dioxygenase. Biochemistry 39(27), 7943–7955 (2000)

    Article  Google Scholar 

  68. Vione, D., Maurino, V., Minero, C., Pelizzetti, E., Harrison, M.A., Olariu, R.-I., Arsene, C.: Photochemical reactions in the tropospheric aqueous phase and on particulate matter. Chem. Soc. Rev. 35(5), 441–453 (2006)

    Google Scholar 

  69. Wagner, M., Loy, A., Nogueira, R., Purkhold, U., Lee, N., Daims, H.: Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek 81(1–4), 665–680 (2002)

    Article  Google Scholar 

  70. Wandrey, C., Liese, A., Kihumbu, D.: Industrial biocatalysis: Past, present, and future. Org. Process Res. Dev. 4(4), 286–290 (2000)

    Article  Google Scholar 

  71. Wang, W.-S., Wang, D.-H., Qu, W.-G., Lu, L.-Q., Xu, A.-W.: Large ultrathin anatase TiO2 nanosheets with exposed 001 facets on graphene for enhanced visible light photocatalytic activity. J. Phys. Chem. C 116(37), 19893–19901 (2012)

    Article  Google Scholar 

  72. Wepasnick, K.A., Smith, B.A., Schrote, K.E., Wilson, H.K., Diegelmann, S.R., Fairbrother, D.H.: Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49(1), 24–36 (2011)

    Article  Google Scholar 

  73. Wojtaś-Wasilewska, M., Luterek, J., Rogalski, J.: Immobilization of protocatechuate 3, 4-dioxygenase from Pleurotus ostreatus on activated porous glass beads. Phytochemistry 27(9), 2731–2733 (1988)

    Google Scholar 

  74. Wojtaś‐Wasilewska, M., Luterek, J., Leonowicz, A., Dawidowicz, A.: Dearomatization of lignin derivatives by fungal protocatechuate 3, 4‐dioxygenase immobilized on porosity glass. Biotechnol. Bioeng. 32(4), 507–511 (1988)

    Google Scholar 

  75. Xu, R., Chi, C., Li, F., Zhang, B.: Laccase-Polyacrylonitrile nanofibrous membrane: Highly immobilized, stable, reusable, and efficacious for 2, 4, 6-Trichlorophenol removal. ACS Appl. Mater. Interfaces. 5(23), 12554–12560 (2013)

    Article  Google Scholar 

  76. Zaborsky, O.R., Ogletree, J.: Immobilization of protocatechuate 3, 4-dioxygenase with activated agarose. Biochimica et Biophysica Acta (BBA)-Enzymology 289(1), 68–76 (1972)

    Google Scholar 

  77. Zaks, A.: Industrial biocatalysis. Curr. Opin. Chem. Biol. 5(2), 130–136 (2001)

    Article  Google Scholar 

  78. Zhai, R., Zhang, B., Wan, Y., Li, C., Wang, J., Liu, J.: Chitosan–halloysite hybrid-nanotubes: Horseradish peroxidase immobilization and applications in phenol removal. Chem. Eng. J. 214, 304–309 (2013)

    Article  Google Scholar 

  79. Zylstra, G., Olsen, R., Ballou, D.: Genetic organization and sequence of the Pseudomonas cepacia genes for the alpha and beta subunits of protocatechuate 3, 4-dioxygenase. J. Bacteriol. 171(11), 5915–5921 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasel Das .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Das, R. (2017). Nanobiohybrid Preparation. In: Nanohybrid Catalyst based on Carbon Nanotube. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-58151-4_5

Download citation

Publish with us

Policies and ethics