Skip to main content

Carbon Nanotube Functionalizations

  • Chapter
  • First Online:
Nanohybrid Catalyst based on Carbon Nanotube

Part of the book series: Carbon Nanostructures ((CARBON))

  • 566 Accesses

Abstract

Hydrophobic CNTs have shown to be aggregated and precipitated in polar solvents. These have made their handling difficult and limited their applications in various fields including water purification technologies, catalysis, polymers, composites, sensors, and optoelectronics. Here, we reported two covalent functionalization schemes for MWCNTs using HNO3/H2O2 mixture and basic KMnO4 solution. HNO3/H2O2 mixture anchored more –C=O and –OH groups on oxidized (O)-MWCNTs which were less soluble in water. In contrast, KMnO4 unzipped the closed-end tips of MWCNT with a higher number of –COOH functionalities. The group (–COOH) was necessary to improve O-MWCNT dispersion and colloidal stability in both water and acetone solvents. We suggested here the –COOH groups were active in neutral (pH 7.1) and more functioning in alkaline aqueous solutions (pH 10.0), but were inactive in acidic media (pH 3.0). Finally, we proposed a mechanism for the solubilization of MWCNTs to interpret the findings. We proved the observations based on XPS, titration, TEM, Raman spectroscopy, TGA and UV/vis spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Future Readings

  1. Abdul Majid, Z., Sabri, M., Anis, N., Buang, N.A., Shahir, S.: Role of oxidant in surface modification of carbon nanotubes for tyrosinase immobilization. J. Funda. Sci. 6(1), 51–56 (2010)

    Google Scholar 

  2. Ahmed, M.H., Byrne, J.A., McLaughlin, J., Elhissi, A., Ahmed, W.: Comparison between FTIR and XPS characterization of amino acid glycine adsorption onto diamond-like carbon (DLC) and silicon doped DLC. Appl. Surf. Sci. 273, 507–514 (2013)

    Article  Google Scholar 

  3. Aitchison, T.J., Ginic-Markovic, M., Matisons, J.G., Simon, G.P., Fredericks, P.M.: Purification, cutting, and sidewall functionalization of multiwalled carbon nanotubes using potassium permanganate solutions. The Journal of Physical Chemistry C 111(6), 2440–2446 (2007)

    Article  Google Scholar 

  4. Andrade, N.F., Martinez, D.S.T., Paula, A.J., Silveira, J.V., Alves, O.L., Souza Filho, A.G.: Temperature effects on the nitric acid oxidation of industrial grade multiwalled carbon nanotubes. J. Nanopart. Res. 15(7), 1–11 (2013)

    Article  Google Scholar 

  5. Baik, S., Usrey, M., Rotkina, L., Strano, M.: Using the selective functionalization of metallic single-walled carbon nanotubes to control dielectrophoretic mobility. J. Phys. Chem. B 108(40), 15560–15564 (2004)

    Article  Google Scholar 

  6. Biniak, S., Szymański, G., Siedlewski, J., Światkowski, A.: The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35(12), 1799–1810 (1997)

    Article  Google Scholar 

  7. Bokobza, L., Zhang, J.: Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polym. Lett 6, 601–608 (2012)

    Article  Google Scholar 

  8. Bortolamiol, T., Lukanov, P., Galibert, A-M., Soula, B., Lonchambon, P., Datas, L., Flahaut, E.: Double-walled carbon nanotubes: quantitative purification assessment, balance between purification and degradation and solution filling as an evidence of opening. Carbon 78, 79–90 (2014)

    Google Scholar 

  9. Chen, G.-X., Kim, H.-S., Park, B.H., Yoon, J.-S.: Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly (l-lactic acid). J. Phys. Chem. B 109(47), 22237–22243 (2005)

    Article  Google Scholar 

  10. Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., Haddon, R.C.: Solution properties of single-walled carbon nanotubes. Science 282(5386), 95–98 (1998)

    Article  Google Scholar 

  11. Das, R., Ali, M.E., Hamid, S.B.A., Ramakrishna, S., Chowdhury, Z.Z.: Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336, 97–109 (2014)

    Article  Google Scholar 

  12. Das, R., Hamid, S.B.A., Ali, M.E., Ismail, A.F., Annuar, M., Ramakrishna, S.: Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354, 160–179 (2014)

    Article  Google Scholar 

  13. Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., Galiotis, C.: Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6), 833–840 (2008)

    Article  Google Scholar 

  14. Dillon, A.C., Gennett, T., Jones, K.M., Alleman, J.L., Parilla, P.A., Heben, M.J.: A simple and complete purification of single-walled carbon nanotube materials. Adv. Mater. 11(16), 1354–1358 (1999)

    Article  Google Scholar 

  15. Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K.S., Casiraghi, C.: Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12(8), 3925–3930 (2012)

    Article  Google Scholar 

  16. Eklund, P., Holden, J., Jishi, R.: Vibrational modes of carbon nanotubes; spectroscopy and theory. Carbon 33(7), 959–972 (1995)

    Article  Google Scholar 

  17. Esteve, W., Budzinski, H., Villenave, E.: Relative rate constants for the heterogeneous reactions of OH, NO2 and NO radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 1: PAHs adsorbed on 1–2 μm calibrated graphite particles. Atmos. Environ. 38(35), 6063–6072 (2004)

    Article  Google Scholar 

  18. Feng, W., Ji, P.: Enzymes immobilized on carbon nanotubes. Biotechnology advances 29(6), 889–895 (2011)

    Google Scholar 

  19. Fogden, S., Verdejo, R., Cottam, B., Shaffer, M.: Purification of single walled carbon nanotubes: the problem with oxidation debris. Chem. Phys. Lett. 460(1), 162–167 (2008)

    Article  Google Scholar 

  20. Gao, Y., Kyratzis, I.: Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide—a critical assessment. Bioconjugate Chem 19(10), 1945–1950 (2008)

    Article  Google Scholar 

  21. Grandi, S., Magistris, A., Mustarelli, P., Quartarone, E., Tomasi, C., Meda, L.: Synthesis and characterization of SiO2–PEG hybrid materials. J. Non-Cryst. Solids 352(3), 273–280 (2006). doi:10.1016/j.jnoncrysol.2005.11.033

    Article  Google Scholar 

  22. Gupta, S.S., Sreeprasad, T.S., Maliyekkal, S.M., Das, S.K., Pradeep, T.: Graphene from sugar and its application in water purification. ACS Appl. Mater. Interfaces. 4(8), 4156–4163 (2012)

    Article  Google Scholar 

  23. Hernadi, K., Siska, A., Thien-Nga, L., Forro, L., Kiricsi, I.: Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ionics 141, 203–209 (2001)

    Article  Google Scholar 

  24. Hill, D.E., Lin, Y., Rao, A.M., Allard, L.F., Sun, Y.-P.: Functionalization of carbon nanotubes with polystyrene. Macromolecules 35(25), 9466–9471 (2002)

    Article  Google Scholar 

  25. Hiura, H., Ebbesen, T.W., Tanigaki, K.: Opening and purification of carbon nanotubes in high yields. Adv. Mater. 7(3), 275–276 (1995)

    Article  Google Scholar 

  26. Hontoria-Lucas, C., Lopez-Peinado, A., López-González, JdD, Rojas-Cervantes, M., Martin-Aranda, R.: Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33(11), 1585–1592 (1995)

    Article  Google Scholar 

  27. Hou, P.-X., Liu, C., Cheng, H.-M.: Purification of carbon nanotubes. Carbon 46(15), 2003–2025 (2008)

    Article  Google Scholar 

  28. Huang, T., Tzeng, Y., Liu, Y., Chen, Y., Walker, K., Guntupalli, R., Liu, C.: Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. Diam. Relat Mater. 13(4), 1098–1102 (2004)

    Article  Google Scholar 

  29. Huang, W., Taylor, S., Fu, K., Lin, Y., Zhang, D., Hanks, T.W., Rao, A.M., Sun, Y.-P.: Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett. 2(4), 311–314 (2002)

    Article  Google Scholar 

  30. Huang, Y.-L., Tien, H.-W., Ma, C.-C.M., Yang, S.-Y., Wu, S.-Y., Liu, H.-Y., Mai, Y.-W.: Effect of extended polymer chains on properties of transparent graphene nanosheets conductive film. J. Mater. Chem. 21(45), 18236–18241 (2011)

    Article  Google Scholar 

  31. Kenkel, J.: Analytical chemistry for technicians. CRC Press, Boca Raton (2002)

    Google Scholar 

  32. Kim, U.J., Furtado, C.A., Liu, X., Chen, G., Eklund, P.C.: Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J. Am. Chem. Soc. 127(44), 15437–15445 (2005)

    Article  Google Scholar 

  33. Klyushin, A.Y., Rocha, T.C., Hävecker, M., Knop-Gericke, A., Schlögl, R.: A near ambient pressure XPS study of Au oxidation. PCCP 16(17), 7881–7886 (2014)

    Article  Google Scholar 

  34. Li, M., Boggs, M., Beebe, T.P., Huang, C.: Oxidation of single-walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound. Carbon 46(3), 466–475 (2008)

    Article  Google Scholar 

  35. Lourderaj, U., Giri, K., Sathyamurthy, N.: Ground and excited states of the monomer and dimer of certain carboxylic acids. J. Phys. Chem. A 110(8), 2709–2717 (2006)

    Article  Google Scholar 

  36. Matarredona, O., Rhoads, H., Li, Z., Harwell, J.H., Balzano, L., Resasco, D.E.: Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J. Phys. Chem. B 107(48), 13357–13367 (2003)

    Article  Google Scholar 

  37. Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K.A., Celik, O., Mastrogiovanni, D., Granozzi, G., Garfunkel, E., Chhowalla, M.: Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19(16), 2577–2583 (2009)

    Article  Google Scholar 

  38. Mishra, G., McArthur, S.L.: Plasma polymerization of maleic anhydride: just what are the right deposition conditions? Langmuir 26(12), 9645–9658 (2010)

    Article  Google Scholar 

  39. Moulder, J., Stickle, W., Sobol, P., Bomben, K.: Handbook of X-ray photoelectron spectroscopy; Perkin-Elmer Corporation: Waltham, MA (1992)

    Google Scholar 

  40. Nandi, C.K., Hazra, M.K., Chakraborty, T.: Vibrational coupling in carboxylic acid dimers. J. Chem. Phys. 123(12), 124310 (2005)

    Article  Google Scholar 

  41. O’connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kittrell, C.: Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581), 593–596 (2002)

    Article  Google Scholar 

  42. Osswald, S., Havel, M., Gogotsi, Y.: Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc. 38(6), 728–736 (2007)

    Article  Google Scholar 

  43. Parveen, S., Rana, S., Fangueiro, R.: A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J. Nanomaterials 2013, 80 (2013)

    Article  Google Scholar 

  44. Pelalak, R., Baniadam, M., Maghrebi, M.: Controllable purification, cutting and unzipping of multi-walled carbon nanotubes with a microwave method. Appl. Phys. A 111(3), 951–957 (2013)

    Article  Google Scholar 

  45. Peng, Y., Liu, H.: Effects of oxidation by hydrogen peroxide on the structures of multiwalled carbon nanotubes. Ind. Eng. Chem. Res. 45(19), 6483–6488 (2006)

    Article  Google Scholar 

  46. Qin, Y., Liu, L., Shi, J., Wu, W., Zhang, J., Guo, Z.-X., Li, Y., Zhu, D.: Large-scale preparation of solubilized carbon nanotubes. Chem. Mater. 15(17), 3256–3260 (2003)

    Article  Google Scholar 

  47. Rehman, A.U., Abbas, S.M., Ammad, H.M., Badshah, A., Ali, Z., Anjum, D.H.: A facile and novel approach towards carboxylic acid functionalization of multiwalled carbon nanotubes and efficient water dispersion. Mater. Lett. 108, 253–256 (2013)

    Article  Google Scholar 

  48. Rück-Braun, K., Petersen, M.Å., Michalik, F., Hebert, A., Przyrembel, D., Weber, C., Ahmed, S.A., Kowarik, S., Weinelt, M.: Formation of carboxy-and amide-terminated alkyl monolayers on silicon (111) investigated by ATR-FTIR, XPS, and X-ray scattering: construction of photoswitchable surfaces. Langmuir 29(37), 11758–11769 (2013)

    Article  Google Scholar 

  49. Q-j, Shen, X-b, Liu, W-j, Jin: Solubility increase of multi-walled carbon nanotubes in water. Carbon 60, 562–563 (2013)

    Google Scholar 

  50. Shieh, Y.-T., Liu, G.-L., Wu, H.-H., Lee, C.-C.: Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media. Carbon 45(9), 1880–1890 (2007)

    Article  Google Scholar 

  51. Shin, H.J., Kim, K.K., Benayad, A., Yoon, S.M., Park, H.K., Jung, I.S., Jin, M.H., Jeong, H.K., Kim, J.M., Choi, J.Y.: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009)

    Article  Google Scholar 

  52. Smith, B., Wepasnick, K., Schrote, K.E., Cho, H.-H., Ball, W.P., Fairbrother, D.H.: Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: a structure—property relationship. Langmuir 25(17), 9767–9776 (2009)

    Article  Google Scholar 

  53. Spencer, N.D.: Tailoring surfaces: modifying surface composition and structure for applications in tribology, biology and catalysis, vol. 5. World scientific, Singapore (2011)

    Google Scholar 

  54. Subrizi, F., Crucianelli, M., Grossi, V., Passacantando, M., Pesci, L., Saladino, R.: Carbon nanotubes as activating tyrosinase supports for the selective synthesis of catechols. ACS Catal. 4(3), 810–822 (2014)

    Article  Google Scholar 

  55. Sun, Y.-P., Fu, K., Lin, Y., Huang, W.: Functionalized carbon nanotubes: properties and applications. Acc. Chem. Res. 35(12), 1096–1104 (2002)

    Article  Google Scholar 

  56. Tang, M., Dou, H., Sun, K.: One-step synthesis of dextran-based stable nanoparticles assisted by self-assembly. Polymer 47(2), 728–734 (2006). doi:10.1016/j.polymer.2005.11.091

    Article  Google Scholar 

  57. Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M.: Chemistry of carbon nanotubes. Chemical reviews 106(3), 1105–1136 (2006)

    Google Scholar 

  58. Thomas, S., Stephen, R.: Rubber Nanocomposites. Preparation, Properties, and Applications, vol. 10. John Wiley & Sons Frontiers in Materials and Minerals Engineering, Singapore (2010)

    Google Scholar 

  59. Tian, R., Wang, X., Li, M., Hu, H., Chen, R., Liu, F., Zheng, H., Wan, L.: An efficient route to functionalize singe-walled carbon nanotubes using alcohols. Appl. Surf. Sci. 255(5), 3294–3299 (2008)

    Article  Google Scholar 

  60. Vickerman, J.C., Gilmore, I.S.: Surface analysis: the principal techniques, vol. 2. Wiley Online Library (2009)

    Google Scholar 

  61. Vione, D., Maurino, V., Minero, C., Pelizzetti, E., Harrison, M.A., Olariu, R.-I., Arsene, C.: Photochemical reactions in the tropospheric aqueous phase and on particulate matter. Chem. Soc. Rev. 35(5), 441–453 (2006)

    Google Scholar 

  62. Walling, C.: Fenton’s reagent revisited. Acc. Chem. Res. 8(4), 125–131 (1975). doi:10.1021/ar50088a003

    Article  Google Scholar 

  63. Wang, J., Zhao, G., Li, Y., Zhu, H., Peng, X., Gao, X.: One-step fabrication of functionalized magnetic adsorbents with large surface area and their adsorption for dye and heavy metal ions. Dalton Trans. 43(30), 11637–11645 (2014)

    Article  Google Scholar 

  64. Wang, Y., Shan, H., Hauge, R.H., Pasquali, M., Smalley, R.E.: A highly selective, one-pot purification method for single-walled carbon nanotubes. J. Phys. Chem. B 111(6), 1249–1252 (2007)

    Article  Google Scholar 

  65. Weber, W.H., Merlin, R. (2000). Raman scattering in materials science, vol. 42. Springer, Berlin

    Google Scholar 

  66. Wepasnick, K.A., Smith, B.A., Schrote, K.E., Wilson, H.K., Diegelmann, S.R., Fairbrother, D.H.: Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49(1), 24–36 (2011)

    Article  Google Scholar 

  67. Yang, N., Zoski, C.G.: Polymer films on electrodes: investigation of ion transport at poly (3,4-ethylenedioxythiophene) films by scanning electrochemical microscopy. Langmuir 22(25), 10338–10347 (2006)

    Article  Google Scholar 

  68. Zeng, L., Zhang, L., Barron, A.R.: Tailoring aqueous solubility of functionalized single-wall carbon nanotubes over a wide pH range through substituent chain length. Nano Lett. 5(10), 2001–2004 (2005)

    Article  Google Scholar 

  69. Zhang, J., Zou, H., Qing, Q., Yang, Y., Li, Q., Liu, Z., Guo, X., Du, Z.: Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B 107(16), 3712–3718 (2003)

    Article  Google Scholar 

  70. Zhang, Z., Zhang, T., Li, J., Ji, Z., Zhou, H., Zhou, X., Gu, N.: Preparation of poly (l-lactic acid)-modified polypropylene mesh and its antiadhesion in experimental abdominal wall defect repair. J. Biomed. Mater. Res. B Appl. Biomater. 102(1), 12–21 (2014)

    Article  Google Scholar 

  71. Zhao, W., Song, C., Pehrsson, P.E.: Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J. Am. Chem. Soc. 124(42), 12418–12419 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasel Das .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Das, R. (2017). Carbon Nanotube Functionalizations. In: Nanohybrid Catalyst based on Carbon Nanotube. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-58151-4_4

Download citation

Publish with us

Policies and ethics