Skip to main content

Carbon Nanotube Purification

  • Chapter
  • First Online:
Nanohybrid Catalyst based on Carbon Nanotube

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Purification and functionalization of MWCNTs are challenging, but vital for their effective applications in various fields including CNTs based water purification technologies, catalysis, optoelectronics, biosensors, fuel cells, and electrode arrays. Existing CNT purification techniques often complicated and time-consuming, yielded shortened and curled MWCNTs that are not suitable for applications in certain fields such as membrane technologies, hybrid catalysis, optoelectronics, and sensor developments. Here we heeded the H2O2 synergetic actions with HCl and KOH in purifying and functionalizing pristine MWCNTs. The method (HCl/H2O2) annihilated all amorphous carbons and metal impurities from the pristine MWCNTs with a high purification yield (100%) compared with HCl alone (93.46%) and KOH/H2O2 (3.92%). We probed the findings using TEM, EDX, ATR-IR spectroscope, Raman spectroscope, and TGA analysis. The study is a new avenue for simple, rapid, low cost, and scalable purification of pristine MWCNTs for application in versatile fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Future Readings

  1. Agnihotri, S., Mota, J.P., Rostam-Abadi, M., Rood, M.J.: Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles. Carbon 44(12), 2376–2383 (2006)

    Article  Google Scholar 

  2. Ali, M., Das, R., Maamor, A., Hamid, S.B.A.: Multifunctional Carbon Nanotubes (CNTs): a new dimension in environmental remediation. Adv. Mater. Res. 832, 328–332 (2014)

    Article  Google Scholar 

  3. Avouris, P., Chen, J.: Nanotube electronics and optoelectronics. Mater Today 9(10), 46–54 (2006)

    Article  Google Scholar 

  4. Banks, C.E., Crossley, A., Salter, C., Wilkins, S.J., Compton, R.G.: Carbon nanotubes contain metal impurities which are responsible for the “Electrocatalysis” Seen at some nanotube-modified electrodes. Angew. Chem. Int. Ed. 45(16), 2533–2537 (2006)

    Article  Google Scholar 

  5. Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes–the route toward applications. Science 297(5582), 787–792 (2002)

    Article  Google Scholar 

  6. Coates J (2000) Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry. 1–23, doi:10.1002/9780470027318.a5606

  7. Das, R., Ali, M.E., Abd Hamid, S.B., Ramakrishna, S., Chowdhury, Z.Z.: Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336, 97–109 (2014). doi:10.1016/j.desal.2013.12.026

    Article  Google Scholar 

  8. Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., Galiotis, C.: Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6), 833–840 (2008)

    Article  Google Scholar 

  9. Dillon, A.C., Gennett, T., Jones, K.M., Alleman, J.L., Parilla, P.A., Heben, M.J.: A simple and complete purification of single-walled carbon nanotube materials. Adv. Mater. 11(16), 1354–1358 (1999)

    Article  Google Scholar 

  10. Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K.S., Casiraghi, C.: Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12(8), 3925–3930 (2012)

    Article  Google Scholar 

  11. Eklund, P., Subbaswamy, K.: Analysis of breit-wigner line shapes in the Raman spectra of graphite intercalation compounds. Phy. Rev. B 20(12), 5157 (1979)

    Article  Google Scholar 

  12. Esteve, W., Budzinski, H., Villenave, E.: Relative rate constants for the heterogeneous reactions of OH, NO2 and NO radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 1: PAHs adsorbed on 1–2 μm calibrated graphite particles. Atmos. Environ. 38(35), 6063–6072 (2004)

    Article  Google Scholar 

  13. Fang, H.-T., Liu, C.-G., Liu, C., Li, F., Liu, M., Cheng, H.-M.: Purification of single-wall carbon nanotubes by electrochemical oxidation. Chem. Mater. 16(26), 5744–5750 (2004). doi:10.1021/cm035263h

    Article  Google Scholar 

  14. Feng, Y., Zhang, H., Hou, Y., McNicholas, T.P., Yuan, D., Yang, S., Ding, L., Feng, W., Liu, J.: Room temperature purification of few-walled carbon nanotubes with high yield. ACS Nano 2(8), 1634–1638 (2008)

    Article  Google Scholar 

  15. Harutyunyan, A.R., Pradhan, B.K., Chang, J., Chen, G., Eklund, P.C.: Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles. J. Phys. Chem. B 106(34), 8671–8675 (2002)

    Article  Google Scholar 

  16. Hone, J., Batlogg, B., Benes, Z., Johnson, A., Fischer, J.: Quantized phonon spectrum of single-wall carbon nanotubes. Science 289(5485), 1730–1733 (2000)

    Article  Google Scholar 

  17. Hou, P.-X., Liu, C., Cheng, H.-M.: Purification of carbon nanotubes. Carbon 46(15), 2003–2025 (2008)

    Article  Google Scholar 

  18. Hou, P., Liu, C., Tong, Y., Xu, S., Liu, M., Cheng, H.: Purification of single-walled carbon nanotubes synthesized by the hydrogen arc-discharge method. J. Mater. Res. 16(09), 2526–2529 (2001)

    Article  Google Scholar 

  19. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  Google Scholar 

  20. Karatepe, N., Yuca, N.: Hydrogen adsorption on carbon nanotubes purified by different methods. Int. J. Hydrogen Energy 36(17), 11467–11473 (2011). doi:10.1016/j.ijhydene.2011.01.128

    Article  Google Scholar 

  21. Kim, U.J., Furtado, C.A., Liu, X., Chen, G., Eklund, P.C.: Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J. Am. Chem. Soc. 127(44), 15437–15445 (2005)

    Article  Google Scholar 

  22. Kobayashi, Y., Nakashima, H., Takagi, D., Homma, Y.: CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst. Thin Solid Films 464, 286–289 (2004)

    Article  Google Scholar 

  23. Koehne, J.E., Chen, H., Cassell, A.M., Ye, Q., Han, J., Meyyappan, M., Li, J.: Miniaturized multiplex label-free electronic chip for rapid nucleic acid analysis based on carbon nanotube nanoelectrode arrays. Clin. Chem. 50(10), 1886–1893 (2004)

    Article  Google Scholar 

  24. Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., Dai, H.: Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 (2000)

    Article  Google Scholar 

  25. Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P.J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodriguez-Macias, F., Shon, Y.S., Lee, T.R., Colbert, D.T., Smalley, R.E.: Fullerene pipes. Science 280(5367), 1253–1256 (1998)

    Article  Google Scholar 

  26. Liu, Z., Xiao, B., Wang, W., Ma, Z.: Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing. J. Mater. Sci. Technol. 30(7), 649–655 (2014)

    Google Scholar 

  27. Ma, P-C., Kim, J-K.: Carbon nanotubes for polymer reinforcement. CRC Press, Boca Raton (2011)

    Google Scholar 

  28. Miyauchi, M., Miao, J., Simmons, T.J., Lee, J.-W., Doherty, T.V., Dordick, J.S., Linhardt, R.J.: Conductive cable fibers with insulating surface prepared by coaxial electrospinning of multiwalled nanotubes and cellulose. Biomacromol 11(9), 2440–2445 (2010)

    Article  Google Scholar 

  29. Naseh, M.V., Khodadadi, A., Mortazavi, Y., Sahraei, O.A., Pourfayaz, F., Sedghi, S.M.: Functionalization of carbon nanotubes using nitric acid oxidation and DBD plasma. World Acad. Sci. Eng. Technol. 49, 177–179 (2009)

    Google Scholar 

  30. Nyquist, R.A.: Interpreting infrared, Raman, and nuclear magnetic resonance spectra. Academic Press, London (2001)

    Google Scholar 

  31. Parveen, S., Rana, S., Fangueiro, R.: A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J. Nanomaterials 2013, 80 (2013)

    Article  Google Scholar 

  32. Peng, Y., Liu, H.: Effects of oxidation by hydrogen peroxide on the structures of multiwalled carbon nanotubes. Ind. Eng. Chem. Res. 45(19), 6483–6488 (2006)

    Article  Google Scholar 

  33. Prasek, J., Drbohlavova, J., Chomoucka, J., Hubalek, J., Jasek, O., Adam, V., Kizek, R.: Methods for carbon nanotubes synthesis-review. J. Mater. Chem. 21(40), 15872–15884 (2011). doi:10.1039/c1jm12254a

    Article  Google Scholar 

  34. Ren, W., Li, F., Chen, J., Bai, S., Cheng, H.-M.: Morphology, diameter distribution and Raman scattering measurements of double-walled carbon nanotubes synthesized by catalytic decomposition of methane. Chem. Phys. Lett. 359(3–4), 196–202 (2002). doi:10.1016/S0009-2614(02)00686-3

    Article  Google Scholar 

  35. Rinzler, A., Liu, J., Dai, H., Nikolaev, P., Huffman, C., Rodriguez-Macias, F., Boul, P., Lu, A.H., Heymann, D., Colbert, D.: Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl. Phys. A Mater. Sci. Process. 67(1), 29–37 (1998)

    Article  Google Scholar 

  36. Sahaym, U., Norton, M.G.: Advances in the application of nanotechnology in enabling a ‘hydrogen economy’. J. Materials Sci. 43(16), 5395–5429 (2008)

    Article  Google Scholar 

  37. Scheibe, B., Borowiak-Palen, E., Kalenczuk, R.J.: Oxidation and reduction of multiwalled carbon nanotubes—preparation and characterization. Mater. Charact. 61(2), 185–191 (2010)

    Article  Google Scholar 

  38. Shieh, Y.-T., Liu, G.-L., Wu, H.-H., Lee, C.-C.: Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media. Carbon 45(9), 1880–1890 (2007)

    Article  Google Scholar 

  39. Shin, Y.-R., Jeon, I.-Y., Baek, J.-B.: Stability of multi-walled carbon nanotubes in commonly used acidic media. Carbon 50(4), 1465–1476 (2012)

    Article  Google Scholar 

  40. Spitalsky, Z., Tasis, D., Papagelis, K., Galiotis, C.: Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35(3), 357–401 (2010)

    Article  Google Scholar 

  41. Suzuki, T., Suhama, K., Zhao, X., Inoue, S., Nishikawa, N., Ando, Y.: Purification of single-wall carbon nanotubes produced by arc plasma jet method. Diamond Relat Mater 16(4), 1116–1120 (2007)

    Article  Google Scholar 

  42. Tans, S.J., Verschueren, A.R., Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393(6680), 49–52 (1998)

    Article  Google Scholar 

  43. Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M.: Chemistry of carbon nanotubes. Chem. Rev. 106(3), 1105–1136 (2006)

    Article  Google Scholar 

  44. Thostenson, E.T., Li, C., Chou, T.-W.: Nanocomposites in context. Compos. Sci. Technol. 65(3), 491–516 (2005)

    Article  Google Scholar 

  45. Vaisman, L., Marom, G., Wagner, H.D.: Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers. Adv. Funct. Mater. 16(3), 357–363 (2006)

    Article  Google Scholar 

  46. Vione, D., Maurino, V., Minero, C., Pelizzetti, E., Harrison, M.A., Olariu, R.-I., Arsene, C.: Photochemical reactions in the tropospheric aqueous phase and on particulate matter. Chem. Soc. Rev. 35(5), 441–453 (2006)

    Google Scholar 

  47. Walling, C.: Fenton’s reagent revisited. Acc. Chem. Res. 8(4), 125–131 (1975). doi:10.1021/ar50088a003

    Article  Google Scholar 

  48. Wang, Y., Shan, H., Hauge, R.H., Pasquali, M., Smalley, R.E.: A highly selective, one-pot purification method for single-walled carbon nanotubes. J. Phys. Chem. B 111(6), 1249–1252 (2007)

    Article  Google Scholar 

  49. Wepasnick, K.A., Smith, B.A., Schrote, K.E., Wilson, H.K., Diegelmann, S.R., Fairbrother, D.H.: Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49(1), 24–36 (2011)

    Article  Google Scholar 

  50. Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971–1975 (1997)

    Article  Google Scholar 

  51. Zhang, Y., Bai, Y., Yan, B.: Functionalized carbon nanotubes for potential medicinal applications. Drug Discovery Today 15(11), 428–435 (2010)

    Article  Google Scholar 

  52. Zhao, X., Ohkohchi, M., Inoue, S., Suzuki, T., Kadoya, T., Ando, Y.: Large-scale purification of single-wall carbon nanotubes prepared by electric arc discharge. Diamond Relat Mater 15(4), 1098–1102 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasel Das .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Das, R. (2017). Carbon Nanotube Purification. In: Nanohybrid Catalyst based on Carbon Nanotube. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-58151-4_3

Download citation

Publish with us

Policies and ethics