Skip to main content

Evaluation of the Cost of Using Power Plant Reject Heat in Low-Temperature District Heating and Cooling Networks

  • Chapter
  • First Online:
District Heating and Cooling Networks in the European Union

Abstract

The purpose of this chapter is to assess the economic impact following as a result of the conversion of conventional stations to cogeneration plants connected to a system for distributing heat and refrigeration.

Prejudice is a burden that confuses the past, threatens the future and renders the present inaccessible.

—Maya Angelou

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To carry out the case studies and in the choice of the type of thermal power plant (which obviously will impact on the type of fuel used), the sample has tried to be as representative as possible. Although there are some exceptions (such as the power plant of Frimmersdorf, which is located 35 km from Cologne and that currently uses its residual heat in the district heating network of Grevenbroich, also known as the “Capital of Energy”) [109], the fact is that lignite power plants tend to be located far from the thermal loads of cities to be normally located near lignite mines. A similar situation occurs with nuclear power plants, which tend to be located away from big cities, so they will not be selected for evaluation.

References

  1. Mayor of London. Costs of incineration and non-incineration energy-from-waste technologies. London: Greater London Authority; 2008.

    Google Scholar 

  2. Friis-Jensen E. Modeling of the combined heat and power system of greater Copenhagen. Kongens Lyngby: Technical University of Denmark; 2010.

    Google Scholar 

  3. IEA. Energy statistics manual. Paris: OECD/IEA; 2010.

    Google Scholar 

  4. Tzimas V. Technology map of the European strategic energy technology plan (SET-Plan): technology descriptions. Luxembourg: European Union; 2011.

    Google Scholar 

  5. Khartchenko NV, Kharchenko VM. Advanced energy systems. 2nd ed. Boca Ratón: CRC Press; 2014.

    Google Scholar 

  6. Lako P. Combined heat and power. Paris: ETSAP; 2010.

    Google Scholar 

  7. OECD. The economics of long-term operation of nuclear power plants. Paris: OECD Nuclear Energy Agency; 2012.

    Book  Google Scholar 

  8. Bergant R, Ploj T, Štrubelj L, Androjna G, Manojlović S, Tomažin P. Combined heat and power production in NPP Krško. Bled: 22nd International Conference Nuclear Energy for New Europe; 2013, p. 10031–9.

    Google Scholar 

  9. Loikala J, Itkyal S, Kaushik A, Keränen S, Nisula R, Roiha U, et al. Opportunities for Finnish environmental technology in India. Helsinki: SITRA; 2006.

    Google Scholar 

  10. Atkins Ltd. Revolving green fund 3 application assessments and outcomes. Bristol: HEFCE; 2013.

    Google Scholar 

  11. Auken S. Combined heat and power in Denmark. Copenhagen: Ministry of Environment and Energy. http://www.statensnet.dk/pligtarkiv/fremvispl?vaerkid=329&reprid=0&filid=3&iarkiv=1. Accessed Nov 2014.

  12. National Research Council. Preprint, proceedings of a symposium on district heating and cooling: National Academy of Sciences Auditorium, Washington, DC, June 4–6. Washington: National Academy Press; 1984.

    Google Scholar 

  13. Burke A. Cartagena: Spain’s largest independent power plant. Infrastruct J Proj Financ Mag. 2003;50–53.

    Google Scholar 

  14. Lee S. Alternative fuels. Washington: CRC Press; 1996.

    Google Scholar 

  15. Sallent-Cuadrado R. Return temperature influence of a district heating network on the CHP plant production costs. Gävle: University of Gävle; 2009.

    Google Scholar 

  16. Sysav. Heat and electricity from waste: Sysav’s waste-to-energy plant. Malmö: Sysav; 2009.

    Google Scholar 

  17. Jonshagen K, Majed S, Magnus G. Post-combustion CO2 capture for combined cycles utilizing hot-water absorbent regeneration. In: Proceedings of ASME turbo expo 2011, Vancouver, June 6–10; 2011.

    Google Scholar 

  18. Ministerio de Economía. Resolución de la Dirección General de Política Energética y Minas, por la que se autoriza a « Endesa Generación, Sociedad Anónima » , la instalación de una central térmica de ciclo combinado con cogeneración en el término municipal de Tarragona: jueves 5 diciembre 2002, BOE núm. 291. Madrid: Ministerio de Economía; 2002, p. 10358–9.

    Google Scholar 

  19. Pei P, Barse K, Gil AJ, Nasah J. Waste heat recovery in CO2 compression. Int J Greenhouse Gas Control. 2014;30:86–96.

    Article  Google Scholar 

  20. Lauenburg P, Wollerstrand J. Adaptive control of radiator systems for a lowest possible district heating return temperature. Energy Build. 2014;72:132–40.

    Article  Google Scholar 

  21. Lončar D, Ridjan I. Medium term development prospects of cogeneration district heating systems in transition country—Croatian case. Energy. 2012;48(1):32–9.

    Article  Google Scholar 

  22. Margaritis N, Rakopoulos D, Mylona E, Grammelis P. Introduction of renewable energy sources in the district heating system of Greece. Int J Sustain Energy Plan Manag. 2014;04:43–56.

    Google Scholar 

  23. Trygg L, Amiri S. European perspective on absorption cooling in a combined heat and power system—a case study of energy utility and industries in Sweden. Appl Energy. 2007;84:1319–37.

    Article  Google Scholar 

  24. Persson U, Werner S. District heating in sequential energy supply. Appl Energy. 2012;95:123–31.

    Article  Google Scholar 

  25. Sundaberg RE, Nyman HO. District heating/cogeneration application studies for the Minneapolis-St. Paul area—methods and costs estimates for converting existing buildings to hot water district heating. Oak Ridge: Oak Ridge National Laboratory; 1979.

    Google Scholar 

  26. Sundaberg RE, Leas R, Frost E, Hagstrom K. District heating/cogeneration application studies for the Minneapolis-St. Paul area: institutional issues of a new district heating/cogeneration system—ownership options, barriers, and implementation strategy. Oak Ridge: Oak Ridge National Laboratory; 1980.

    Google Scholar 

  27. Barnes MH, Abrahamsson B. District heating/cogeneration application studies for the Minneapolis-St. Paul area—market assessment and economic analysis of the St. Paul district heating system (Vol. II). Oak Ridge: Oak Ridge National Laboratory; 1983.

    Google Scholar 

  28. Margen P, Cronholm LA, Larsson K, Marklund JE. District heating/cogeneration application studies for the Minneapolis-St. Paul area—Executive summary: overall feasibility and economic viability for a district heating/new cogeneration system in Minneapolis, St. Paul. Oak Ridge: Oak Ridge National Laboratory; 1979.

    Google Scholar 

  29. Kolb JO, Bauman HF, Jones PD. Technical feasibility and economics of retrofitting an existing nuclear power plant to cogeneration for hot water district heating. Oak Ridge: Oak Ridge National Laboratory; 1984.

    Book  Google Scholar 

  30. Olszewski M. Power plant rejected heat utilization: an assessment of the potential for wide-scale implementation. Oak Ridge: Oak Ridge National Laboratory; 1977.

    Book  Google Scholar 

  31. Nyman HO, Kolb JO, Krautbauer M. District heating/cogeneration application studies for the Minneapolis-St. Paul area—market assessment and economic analysis of the St. Paul district heating system. Oak Ridge: Oak Ridge National Laboratory; 1983.

    Google Scholar 

  32. Englesson GA, Pavlenco GF, Hodson JS, Lee NH, García AN, Menaker BJ. District heating/cogeneration application studies for the Minneapolis-St. Paul area—economic comparison of new coal-fueled, cogeneration power plants for district heating and electricity-only and heat-only power plants. Oak Ridge: Oak Ridge National Laboratory; 1982.

    Google Scholar 

  33. Englesson GA, Casapis MC, Pavlenco GF, Menaker B, Lee NH, Denesdi L. District heating/cogeneration application studies for the Minneapolis-St. Paul area—modifications of the existing units at the high bridge power plant to cogeneration for hot water district heating. Oak Ridge: Oak Ridge National Laboratory; 1980.

    Google Scholar 

  34. Lund H. District heating and market economy in Latvia. Energy. 1999;24(7):549–59.

    Article  Google Scholar 

  35. Lund H, Möller B, Mathiesen BV, Dyrelund A. The role of district heating in future renewable energy systems. Energy. 2010;35(3):1381–90.

    Article  Google Scholar 

  36. Nielsen S, Möller B. GIS based analysis of future district heating potential in Denmark. Energy. 2013;57:458–68.

    Article  Google Scholar 

  37. Dotzauer E. Experiences in mid-term planning of district heating systems. Energy. 2003;28(15):1545–55.

    Article  Google Scholar 

  38. Rezaie B, Rosen MA. District heating and cooling: review of technology and potential enhancements. Appl Energy. 2012;93:2–10.

    Article  Google Scholar 

  39. Chow TT, Au WH, Yau R, Cheng V, Chan A, Fong KF. Applying district-cooling technology in Hong Kong. Appl Energy. 2004;79:275–89.

    Article  Google Scholar 

  40. Piacentino A, Barbaro C, Cardona F, Gallea R, Cardona E. A comprehensive tool for efficient design and operation of polygeneration-based energy lgrids serving a cluster of buildings. Part I: description of the method. Appl Energy. 2013;111:1204–21.

    Article  Google Scholar 

  41. Pusat S, Erdem HH. Techno-economic model for district heating systems. Energy Build. 2014;72:177–85.

    Article  Google Scholar 

  42. Möller B, Lund H. Conversion of individual natural gas to district heating: geographical studies of supply costs and consequences for the Danish energy system. Appl Energy. 2010;87:1846–57.

    Article  Google Scholar 

  43. Eriksson O, Finnveden G, Ekvall T, Björklund A. Life cycle assessment of fuels for district heating: a comparison of waste incineration, biomass, and natural gas combustion. Energy Policy. 2007;35:1346–62.

    Article  Google Scholar 

  44. Nitkiewicz A, Sekret R. Comparison of LCA results of low temperature heat plant using electric heat pump, absorption heat pump and gas-fired boiler. Energy Convers Manag. 2014;87:647–52.

    Article  Google Scholar 

  45. Nitkiewicz A, Sekret R. Comparison of district heating CHP and distributed generation CHP with energy, environmental and economic criteria for Northern Italy. Energy Convers Manag. 2015;92:114–28.

    Article  Google Scholar 

  46. Finney KN, Chen Q, Sharifi VN, Swithenbank J, Nolan A, White S. Developments to an existing city-wide district energy network: part II—analysis of environmental and economic impacts. Energy Convers Manag. 2012;62:176–84.

    Article  Google Scholar 

  47. Ghafghazi S, Sowlati T, Sokhansanj S, Melin S. A multicriteria approach to evaluate district heating system options. Appl Energy. 2010;87:1134–40.

    Article  Google Scholar 

  48. Tana S, Hashima H, Lee C, Taib MR, Yan J. Economical and environmental impact of waste-to-energy (WTE) alternatives for waste incineration, landfill and anaerobic digestion. Energy Proced. 2014;61:704–8.

    Article  Google Scholar 

  49. Udomsri S, Martin AR, Martin V. Thermally driven cooling coupled with municipal solid waste-fired power plant: application of combined heat, cooling and power in tropical urban areas. Appl Energy. 2011;88:1532–42.

    Article  Google Scholar 

  50. Åberg M. Investigating the impact of heat demand reductions on Swedish district heating production using a set of typical system models. Appl Energy. 2014;118:246–57.

    Article  Google Scholar 

  51. Wahlund B, Yan J, Westermark M. A total energy system of fuel upgrading by drying biomass feedstock for cogeneration: a case study of Skellefteå bioenergy combine. Biomass Bioenerg. 2002;23:271–81.

    Article  Google Scholar 

  52. Song H, Starfelt F, Daianova L, Yan J. Influence of drying process on the biomass-based polygeneration system of bioethanol, power and heat. Appl Energy. 2012;90:32–7.

    Article  Google Scholar 

  53. Li H, Wang W, Yan J, Dahlquist E. Economic assessment of the mobilized thermal energy storage (M-TES) system for distributed heat supply. Appl Energy. 2013;104:178–86.

    Article  Google Scholar 

  54. Wahlund B, Yan J, Westermark M. Increasing biomass utilisation in energy systems: a comparative study of CO2 reduction and cost for different bioenergy processing options. Biomass Bioenerg. 2004;26:531–44.

    Article  Google Scholar 

  55. Li H, Sun Q, Zhang Q. Wallin. A review of the pricing mechanisms for district heating systems. Renew Sustain Energy Rev. 2015;42:56–65.

    Article  Google Scholar 

  56. Ma Z, Li H, Sun Q, Wang C, Yan A, Starfelt F. Statistical analysis of energy consumption patterns on the heatdemand of buildings in district heating systems. Energy Build. 2014;85:464–72.

    Article  Google Scholar 

  57. Ristimäki M, Säynäjoki A, Heinonen J, Junnila S. Combining life cycle costing and life cycle assessment for an analysis of a new residential district energy system design. Energy. 2013;63:168–79.

    Article  Google Scholar 

  58. Oliver-Solá J, Gabarrell X, Rieradevall J. Environmental impacts of the infrastructure for district heating in urban neighbourhoods. Energy Policy. 2009;37:4711–9.

    Article  Google Scholar 

  59. Yu D, Tan H, Ruan Y. An improved two-step floating catchment area method for supporting district building energy planning: a case study of Yongding County city, China. Appl Energy. 2012;95:156–63.

    Article  Google Scholar 

  60. Streckiene G, Martinaitis V, Andersen AN, Katz J. Feasibility of CHP-plants with thermal stores in the German spot market. Appl Energy. 2009;86:2308–16.

    Article  Google Scholar 

  61. Krajacic G, Duić N, Zmijarević Z, Mathiesen BV, Vučinić AA, Carvalho MG. Planning for a 100% independent energy system based on smart energy storage for integration of renewables and CO2 emissions reduction. Appl Therm Eng. 2011;31(13):2073–83.

    Article  Google Scholar 

  62. Jožef Stefan Institute. Methodology for determining the reference costs for high-efficiency cogeneration. Ljubljana: Ministry of the Economy of the Republic of Slovenia; 2009.

    Google Scholar 

  63. Anderson D. Electricity generation costs and investment decisions: a review. London: Imperial College Centre for Energy Policy and Technology; 2007.

    Google Scholar 

  64. Newell SA, Hagerty JM, Spees K, Pfeifenberger JP, Liao Q, Ungate CD, et al. Cost of new entry estimates for combustion turbine and combined cycle plants in PJM. Cambridge: The Brattle Group; 2014.

    Google Scholar 

  65. Vuorinen A. National power system planning. Wärtsilä Tech J. 2007;02(2007):21–5.

    Google Scholar 

  66. Paulson CAJ, Durie RA, McMullan P, Smith AY, Williams DJ. Greenhouse gas control technologies: proceedings of the 5th international conference on greenhouse gas control technologies. Collingwood: CSIRO; 2001.

    Google Scholar 

  67. Dimian AC, Bildea C, Kiss A. Integrated desing and simulation of chemical processes. Radarweg: Elsevier; 2014.

    Google Scholar 

  68. Levidow L, Papaioannou T, Borda-Rodríguez A. Innovation priorities for UK bioenergy: technological expectations within path dependence. Sci Technol Stud. 2013;26(3):14–36.

    Google Scholar 

  69. Policy Directorate General Regional. Guide to cost benefit analysis of investment projects. 1st ed. Brussels: European Commission; 2008.

    Google Scholar 

  70. Florio M, Maffii S, Atkinson G, De Rus G, Evans D, Ponti M, et al. Structural funds, cohesion fund and instrument for pre-accession. Brussels: European Commission; 2008.

    Google Scholar 

  71. Cambridge Economic Policy Associates and Ricardo—AEA. Development of phase II of the Northern Ireland Renewable Heat Incentive. Belfast: Department of Enterprise, Trade and Investment; 2013.

    Google Scholar 

  72. Element Energy Limited and AEA Group. 2050 options for decarbonising heat in buildings: committee on climate change—final report. Cambridge: Element Energy Limited; 2012.

    Google Scholar 

  73. Ove Arup & Partners. Stockport town centre district energy system: recommended actions to create phase 1. Stockport: Stockport Metropolitan Borough Council; 2011.

    Google Scholar 

  74. Ricardo-AEA. The durability of products: task 1 report. Standard assessment for the circular economy under the eco-innovation action plan. Brussels: European Commission; 2014.

    Google Scholar 

  75. Economic Regulation Authority. Floor and ceiling costs to apply to the public transport authority. Perth: Government of Western Australia; 2004.

    Google Scholar 

  76. De Jong P. Economic, technical and environmental analysis of renewable and non-renewable electricity generation technologies in Brazil. Salvador de Bahía, Federal University of Bahia; 2013.

    Google Scholar 

  77. Simoes S, Nijs W, Ruiz P, Sgobbi A, Radu D, Bolat P, et al. The JRC-EU-TIMES model—assessing the long-term role of the SET plan energy technologies. Luxembourg: European Commission; 2013.

    Google Scholar 

  78. Müller B, Michaelowa A, Vrolijk C. Rejecting Kyoto: a study of proposed alternatives to the Kyoto Protocol. London: Climate Strategies; 2001.

    Google Scholar 

  79. DNV Climate Change Services. Third party assessment of the comprehensive refurbishment of the Prunéřov II power plant. Prague: Ministry of the Environment of the Czech Republic; 2010.

    Google Scholar 

  80. Bauer N, Brecha RJ, Luderer G. Innovation priorities for UK bioenergy: technological expectations within path dependence. Proc Natl Acad Sci. 2012;109(42):16805–10.

    Article  Google Scholar 

  81. Lahmeyer International. Energy interconnection Europe—Malta: Final report—work package IIA; 2008.

    Google Scholar 

  82. Punnonen K. Small and Medium size LNG for Power Production. Vaasa: Wärtsilä Finland Oy; 2013.

    Google Scholar 

  83. IEA. World energy investment outlook. Insights. Paris: OECD; 2003. p. 2003.

    Google Scholar 

  84. Larsson S. Reviewing electricity generation cost assessments. Uppsala: Uppsala Universitet; 2012.

    Google Scholar 

  85. Rosnes O, Vennemo H. Powering up: costing power infrastructure spending needs in Sub-Saharan Africa. Washington: The World Bank; 2009.

    Google Scholar 

  86. IAEA. Comparative studies of energy supply options in Poland for 1997–2020. Vienna: International Atomic Energy Agency; 2002.

    Google Scholar 

  87. Bureau of Resources and Energy. Economics Australian energy technology assessment 2013 model update. Canberra: Commonwealth of Australia; 2013.

    Google Scholar 

  88. Eurostat. Gas prices for domestic consumers—bi-annual data. Luxembourg: Eurostat. http://ec.europa.eu/eurostat/en/web/products-datasets/-/NRG_PC_202. Accessed 3 Oct 2015.

  89. Union European. EU Energy, transport and GHG emissions trends to 2050: reference scenario 2013. Luxembourg: European Union; 2014.

    Google Scholar 

  90. Market Observatory for Energy. Quaterly report on European electricity markets: volume 6, issue 2. Brussels: European Commission; 2013.

    Google Scholar 

  91. Eurostat. Gas prices for industrial consumers, from 2007 onwards—bi-annual data. Luxembourg: Eurostat; 2014. http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do. Accessed 10 Jan 2015.

  92. European Union. Electricity prices for domestic consumers, from 2007 onwards–bi-annual data; 2014. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_204&lang=en. Accessed 12 Jan 2015.

  93. IEA. Electricity information 2012. Paris: OECD/IEA; 2012.

    Google Scholar 

  94. Vikkelso A, Larsen JHM, Sørensen HC. The Middelgrunden offshore wind farm: a popular initiative. Copenhagen: Copenhagen Environment and Energy Office; 2003.

    Google Scholar 

  95. MWH. Electricity emission factor review. London: European Bank for reconstruction and development; 2009.

    Google Scholar 

  96. Osman AE. Life cycle optimization model for integrated cogeneration and energy systems applications in buildings. Pittsburgh: University of Pittsburgh; 2006.

    Google Scholar 

  97. Sánchez-Castaño J. Analysis of a new district heating line evaluation of heat losses and hydraulic facilities. Gävle: University of Gävle; 2008.

    Google Scholar 

  98. SEAI. Derivation of primary energy and CO2 factors for electricity. Dublin: Sustainable Energy Authority of Ireland; 2010.

    Google Scholar 

  99. Energinet. Technology data for energy plants: generation of electricity and district heating, energy storage and energy carrier generation and conversion. Erritsø: Energinet; 2012.

    Google Scholar 

  100. Eurelectric. Efficiency in electricity generation. Brussels: Union of the Electricity Industry; 2003.

    Google Scholar 

  101. Egenhofer C, Jansen JC, Bakker SJA, Jussila-Hammes J. Revisiting EU policy options for tackling climate change: a social cost-benefit analysis of GHC emissions reduction strategies. Brussels: Centre for European Policy Studies; 2006.

    Google Scholar 

  102. European Commission. How to develop a Sustainable Energy Action Plan (SEAP)—Guidebook. Luxembourg: Publications office of the European Union; 2010.

    Google Scholar 

  103. Hill N, Venfield H, Dun C, James K. 2013 Government GHC conversion factors for company reporting: methodology paper for emission factors. London: Department for Environment Food & Rural Affairs; 2013.

    Google Scholar 

  104. AECOM. Smart city—intelligent energy integration for London’s decentralised energy projects. London: Greater London Authority; 2012.

    Google Scholar 

  105. Amiri S. Economic and environmental benefits of CHP-based district heating systems in Sweden. Linköping: Linköping Institute of Technology; 2013.

    Google Scholar 

  106. Beer M, Huber M, Mauch W. Flexible operation of cogeneration plants—chances for the integration of renewables. Munich: The Research Center for Energy Economics; 2012.

    Google Scholar 

  107. Molyneaux A, Leyland G, Favrat D. Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps. Energy. 2010;35(2):751–8.

    Article  Google Scholar 

  108. Pöyry. The potential and costs of district heating networks. Oxford: Pöyry Energy Ltd; 2009.

    Google Scholar 

  109. RWE, 2005. Frimmersdorf and Neurath power plants: electricity from Rhenish lignite. Bergheim: RWE Power AG; 2005.

    Google Scholar 

  110. Gargiulo M. Getting started with TIMES-VEDA: version 2,7. Paris: IEA—Energy Technology Systems Analysis Programme; 2009.

    Google Scholar 

  111. Harvey D. A handbook on low-energy buildings and district-energy systems: fundamentals, techniques and examples. New York: Taylor & Francis; 2006.

    Google Scholar 

  112. Gadd H, Werner S. Achieving low return temperatures from district heating substations. Appl Energy. 2014;136:59–67.

    Article  Google Scholar 

  113. Rydstrand M. An analysis of the efficiency and economy of humidified gas turbines in district heating applications. Energy. 2004;29(12–15):1945–61.

    Article  Google Scholar 

  114. Danfoss A/S. The heating book—8 steps to control of heating systems. Nordborg: Danfoss A/S; 2008.

    Google Scholar 

  115. Harvey DA. Clean building: contribution from cogeneration, trigeneration and district energy. Waltham Abbey: Cogeneration and on-site power production (September–October 2006); 2006, p. 107–15.

    Google Scholar 

  116. Breeze P. The cost of power generation: the current and future competitiveness of renewable and traditional technologies. Warwick: Business Insights; 2010.

    Google Scholar 

  117. House of Lords. Energy efficiency—volume II: evidence (2nd report of Session 2005–06). London: House of Lords; 2005.

    Google Scholar 

  118. Davison J. Retrofitting CO2 capture to existing power plants: report 2011/02. Cheltenham: IEAGHC; 2011.

    Google Scholar 

  119. Parsons Brinckerhoff. Thermal power station advice—fixed & variable O&M costs: report for the electricity commission. Wellington: Electricity Commission; 2009.

    Google Scholar 

  120. Blyth W. The economics of transition in the power sector. Paris: International Energy Agency; 2010.

    Book  Google Scholar 

  121. Euroheat & Power. District heating in buildings. Brussels: Euroheat & Power; 2011.

    Google Scholar 

  122. Rhodes M. A new model for ECO; London: Encraft Ltd; 2014. www.encraft.co.uk/viewpoints/a-new-model-for-eco. Accessed 28 Aug 2014.

  123. Dalla Rosa A, Boulter R, Church K, Svendsen S. District heating (DH) network design and operation toward a system-wide methodology for optimizing renewable energy solutions (SMORES) in Canada: a case study. Energy 2012;45(1):960–74.

    Google Scholar 

  124. Nuorkivi A. To the rehabilitation strategy of district heating in economies in transition. Espoo: Helsinki University of Technology; 2005.

    Google Scholar 

  125. Zhang L, Lianzhong L, Oddgeir G, Jan Eric T, Hongwei L, Svend S. China’s Anshan project—a good example to implementing Scandinavian technology and environmentally friendly heat source to upgrade the DH system. Stockholm: The 14th International Symposium on District Heating and Cooling; 2014.

    Google Scholar 

  126. Riddle A. District heating & the future smart cities approach. Copenhagen: Ramboll Group A/S; 2013.

    Google Scholar 

  127. Kalkumn B. Improvement of district heating in Kosovo: final report. Heidelberg: Energy & Utility Consulting; 2009.

    Google Scholar 

  128. Ånestad A. Net electricity load profiles of zero emission buildings: a cost optimization investment model for investigating zero balances, operational strategies and grid restrictions. Trondheim: Norwegian University of Science and Technology; 2014.

    Google Scholar 

  129. Gil S, Gill S, Dolan MJ, Frame D, Ault GW. The role of electric heating and district heating networks in the integration of wind energy to island networks. Int J Distrib Energy Resour. 2010;7(3):245–63.

    Google Scholar 

  130. Akkaya BM, Romanchenko D. Modeling and analysis of a district heating system containing thermal storage: case study of the district heating of Borås. Göteborg: Chalmers University of Technology; 2013.

    Google Scholar 

  131. Kjær Petersen M, Aagaard J. Heat accumulators: news from DBDH 1/2004. Copenhagen: Energi E2; 2004.

    Google Scholar 

  132. Calixto E. CENPES II project reliability analysis: safety and reliability for managing risk. Estoril: European Safety and Reliability Conference 2006; 2006. p. 2461–2468.

    Google Scholar 

  133. Capital Cooling, 2014. District cooling and the customers’ alternative cost: work package 2. Dresden: Renewable Smart Cooling for Urban Europe.

    Google Scholar 

  134. Goodheart KA. Low firing temperature absorption chiller system. Madison: University of Wisconsin; 2000.

    Google Scholar 

  135. Holmberg J. Our dream—a city free from fossil fuels: production of district heating, district cooling, electricity and biogas. Borås: Borås Energi och Miljö; 2009.

    Google Scholar 

  136. Kaan H. District heating systems with low losses. Petten: Demohouse; 2008.

    Google Scholar 

  137. Kankaro B. Smart district heating from Finland: the coldest country in Europe, the best country of district heating. Helsinki: Cleantech Finland; 2013.

    Google Scholar 

  138. Department of Energy & Climate Change. European energy efficiency: analysis of ODYSSEE indicators. London: Department of Energy & Climate Change; 2012.

    Google Scholar 

  139. Ehrig R, Kristöfel C, Pointner C. Operating figures, quality parameters and investment costs for district heating systems. Wieselburg-Land: Bioenergy 2020+; 2011. http://www.afo.eu.com/default.asp?SivuID=28291. Accessed 27 Dec 2014.

  140. Rafferty K. Selected cost considerations for geothermal district heating in existing single-family residential areas. GHC Bull. 1996. p. 10–5.

    Google Scholar 

  141. Kopuničová M. Feasibility study of binary geothermal power plants in Eastern Slovakia: analysis of OCR and Kalina power plants. Akureyri: The School for Renewable Energy Science; 2009.

    Google Scholar 

  142. Eggen G, Vangsnes G. Heat pump for district cooling and heating at Oslo Airport, Gardermoen. Trondheim: Sintef; 2004.

    Google Scholar 

  143. Pérez de Viñaspre M, Bourouis M, Coronas A, Garcı́a A, Soto V, Pinazo JM. Monitoring and analysis of an absorption air-conditioning system. Energy Build. 2004;36(9):933–43.

    Google Scholar 

  144. Yakazi Europe Limited. Concepts for energy efficient cooling: absorption chiller installation in a hotel; 2008. http://www.yazaki-airconditioning.com/applications/case_studies/hotel.html. Accessed 30 Dec 2014.

  145. Northwest Power & Conservation Council. Regional costs and bulk power system benefits. Portland: Northwest Power & Conservation Council; 2000. http://www.nwcouncil.org/media/6665/EStarHPandACUpgradeMHPTCSrev.xls. Accessed 1 Jan 2015.

  146. Dinçer I, Zamfirescu C. Sustainable energy systems and applications. New York: Springer; 2011.

    Google Scholar 

  147. Edwards Valance. Valance vs. fan coils units. Pompton Plains: Chiller Solutions LLC; 2008.

    Google Scholar 

  148. Keil C. Customized absorption heat pumps for utilization of low-grade heat sources. Garching: Bavarian Center for Applied Energy Research; 2008.

    Google Scholar 

  149. Herold KE, Radermacher R, Klein SA. Absorption chillers and heat pumps. Boca Ratón: CRC Press; 1996.

    Google Scholar 

  150. Nowak S. Reducing energy use of an electric floor heating system and analyzing thermal comfort and heat transmission when using different control strategies. Gävle: University of Gävle; 2014.

    Google Scholar 

  151. Grohnheit PE. Socio economic research on fusion EFDA technology workprogramme 2011 WP11-SER-ETM-1,3,6: Activity 1,3,6. modelling infrastructures—final report. Roskilde: Technical University of Denmark; 2012.

    Google Scholar 

  152. Schmidt RR, Fevrier N, Dumas P. Smart cities: stakeholder platform—smart thermal grids. 2nd Version. Brussels: European Commission; 2013.

    Google Scholar 

  153. Dalla Rosa A. Toward 4th generation district heating: experience and potential of low-temperature district heating—Annex X final report. Paris: IEA; 2014.

    Google Scholar 

  154. DBDH. DHC in Denmark: characteristics. Frederiksberg: Danish Board of District Heating; 2014. http://dbdh.dk/characteristics/. Accessed 18 May 2015.

  155. Ramboll. Thermal storage in district heating systems. Copenhagen: Ramboll; 2014. http://www.districtenergy.org/assets/pdfs/03AnnualConference/Monday-A/A4,1OVERBYERamboll-A4ThermalStoresinDH-slidesonly.pdf. Accessed 18 May 2015.

  156. Pirouti M, Bagdanavicius A, Ekanayake J, Wu J, Jenkins N. Energy consumption and economic analyses of a district heating network. Energy. 2013;57:149–59.

    Article  Google Scholar 

  157. Torchio MF, Genon G, Poggio A, Poggio M. Merging of energy and environmental analyses for district heating systems. Energy. 2009;34(3):220–7.

    Article  Google Scholar 

  158. Dalla Rosa A, Christensen JE. Low-energy district heating in energy-efficient building areas. Energy 2011;36(12):6890–99.

    Google Scholar 

  159. Energy Saving Trust. The applicability of district heating for new dwellings. London: Energy Saving Trust; 2008.

    Google Scholar 

  160. Ziębik A, Gładysz P. Optimal coefficient of the share of cogeneration in district heating systems. Energy. 2012;45(1):220–7.

    Article  Google Scholar 

  161. Brage A. District heating form biomass in Borensberg. Stockholm: Swedish Environmental Protection Agency; 2010.

    Google Scholar 

  162. Gustavsson L, Karlsson Å. Heating detached houses in urban areas. Energy. 2003;28(8):851–75.

    Article  Google Scholar 

  163. Jones C. Utilising nuclear energy for low carbon heating services in the UK. Manchester: University of Manchester; 2013.

    Google Scholar 

  164. Li H, Svendsen S. Energy and exergy analysis of low temperature district heating network. Energy. 2012;45(1):237–46.

    Article  Google Scholar 

  165. Britannica Encyclopaedia. Britannica book of the year (2008). Chicago: Encyclopaedia Britannica Inc.; 2008.

    Google Scholar 

  166. Department for Communities and Local Government. Number of households, 2008 mid-year estimate, Bristol, City of UA; 2014. http://opendatacommunities.org/showcase/dashboard/local_authorities/unitary-authority/bristol. Accessed 5 Dec 2014.

  167. INE. Censos de población y viviendas 2011: Edificios y viviendas. Madrid: Instituto Nacional de Estadística; 2013.

    Google Scholar 

  168. INE. Banco de series temporales; 2014. http://www.ine.es/consul/serie.do?d=true&s=EPOB23940&nult=15. Accessed 4 Dec 2014.

  169. INE. Nomenclator: Población del padrón continuo por unidad poblacional; 2015. http://www.ine.es/nomen2/index.do?accion=busquedaAvanzada&entidad_amb=no&codProv=30&codMuni=016&codES=0&codNUC=&L=&ano=2011. Accessed 2 Jan 2015.

  170. Zangheri P, Armani R, Pietrobon M, Pagliano L, Fernandez Boneta M, Müller A. Heating and cooling energy demand and loads for building types in different countries of the EU: D2,3. of WP2 of the Entranze Project. Vienna: Entranze Project; 2014.

    Google Scholar 

  171. Biaou A, Bernier M. Achieving total domestic hot water production with renewable energy. Build Environ. 2008;43(4):651–60.

    Article  Google Scholar 

  172. Van Dijk D, Spiekman M, de Wilde P. Monthly method to calculate cooling demand for EP regulations (progress report). Delft: TNO Building and Construction Research; 2004.

    Google Scholar 

  173. European Energy Agency. Energy efficiency and energy consumption in the household sector (ENER 022)—Assessment published Apr 2012. Copenhagen: European Energy Agency; 2012. http://www.eea.europa.eu/data-and-maps/indicators/energy-efficiency-and-energy-consumption-5/assessment. Accessed 5 Jan 2014.

  174. Tacis. Optimisation of energy supply and demand in municipalities: the example of Tver. Brussels: European Commission; 1995.

    Google Scholar 

  175. Manyes A, Sisó L, Salom J. Block level study and simulation for residential retrofitting. Chambéry. In 13th conference of international building performance simulation association; 2013, p. 88–95.

    Google Scholar 

  176. Guarino F, Salom J, Cellura M. Modeling of Spanish household electrical consumptions: Simplified and detailed stochastic approach in TRNSYS environment. Chambéry. In: 13th conference of international building performance simulation association; 2013. p. 2436–43.

    Google Scholar 

  177. Rees M. The integrated design of new build multi vector energy supply schemes. Cardiff: Cardiff University; 2012.

    Google Scholar 

  178. IDOM. Análisis de contexto de la Región de Murcia (Multisectorial): Gestión de contenidos “Foros de Innovación”—Programa InnoCámaras. Murcia: InnoCámaras; 2010.

    Google Scholar 

  179. Department for Business Innovation & Skills. Business population estimates for the UK and regions 2013. London: Department for Business Innovation & Skills; 2013.

    Google Scholar 

  180. Smith DW. Cold regions utilities monograph. 3rd ed. Reston: American Society of Civil Engineers; 1996.

    Book  Google Scholar 

  181. McKinnon D, Bolland T, Kallay TK, Bakas I, Buttler M, Von Geibler J, et al. Housing assessment: final report ETC/SCP 2012, Task 2.5.1.1. Copenhagen: European Topic Centre on Sustainable Consumption and Production; 2013.

    Google Scholar 

  182. Menkveld M, Beurskens L. Renewable heating and cooling in the Netherlands: D3 of WP2 from the RES-H policy project. Petten: Energy Research Centre of the Netherlands; 2009.

    Google Scholar 

  183. Economidou M. Europe’s building under the microscope: a country-by-country review of the energy performance of buildings. Brussels: Buildings Performance Institute Europe; 2011.

    Google Scholar 

  184. Laitner JA. Energy efficiency investments as an economic productivity strategy for Texas. Washington: American Council for an Energy-Efficient Economy; 2011.

    Google Scholar 

  185. Morbee J. Analysis of energy saving potentials in energy generation: Final results. Luxembourg: European Union; 2012.

    Google Scholar 

  186. Turner A. Meeting carbon budgets—the need for a step change. London: Parliament Committee on Climate Change; 2009.

    Google Scholar 

  187. Manicuta M. Aspects on the development of the regulatory framework for promoting renewable energy in Romania. Bucarest: Autoritatea Naţională de Reglementare în domeniul Energiei; 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Colmenar-Santos .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Colmenar-Santos, A., Borge-Díez, D., Rosales-Asensio, E. (2017). Evaluation of the Cost of Using Power Plant Reject Heat in Low-Temperature District Heating and Cooling Networks. In: District Heating and Cooling Networks in the European Union. Springer, Cham. https://doi.org/10.1007/978-3-319-57952-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57952-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57951-1

  • Online ISBN: 978-3-319-57952-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics