Skip to main content

Multi-threshold Segmentation Using Learning Automata

  • Chapter
  • First Online:
Engineering Applications of Soft Computing

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 129))

Abstract

Multi-threshold selection for image segmentation is considered as a critical pre-processing step for image analysis, pattern recognition and computer vision. This chapter explores the use of the Learning Automata (LA) algorithm to compute the thresholding points for segmentation proposes. LA is a heuristic method which is able to solve complex optimization problems with interesting results in parameter estimation. Different to other optimization approaches, LA explores in the probability space providing appropriate convergence properties and robustness. In this chapter the segmentation task is considered as an optimization problem and the LA is used to generate the image multi-threshold points. In this approach, one 1-D histogram of a given image is approximated through a Gaussian mixture model whose parameters are calculated using the LA algorithm. Each Gaussian function approximating the histogram represents a pixel class and therefore a thresholding point. Experimental results show fast convergence of the method, avoiding the typical sensitivity to initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abak T, Baris U, Sankur B (1997) The performance of thresholding algorithms for optical character recognition. In: Proceedings of international conference on document analytical recognition, pp 697–700

    Google Scholar 

  2. Kamel M, Zhao A (1993) Extraction of binary character/graphics images from grayscale document images, Graph. Models Image Process 55(3):203–217

    Article  Google Scholar 

  3. Trier OD, Jain AK (1995) Goal-directed evaluation of binarization methods. IEEE Trans Pattern Anal Mach Intel 17(12):1191–1201

    Article  Google Scholar 

  4. Bhanu B (1986) Automatic target recognition: state of the art survey. IEEE Trans Aerosp Electron Syst 22:364–379

    Article  Google Scholar 

  5. Sezgin M, Sankur B (2001) Comparison of thresholding methods for non-destructive testing applications. In: IEEE international conference on image processing, pp 764–767

    Google Scholar 

  6. Sezgin M, Tasaltin R (2000) A new dichotomization technique to multilevel thresholding devoted to inspection applications. Pattern Recogn Lett 21(2):151–161

    Article  Google Scholar 

  7. Guo R, Pandit SM (1998) Automatic threshold selection based on histogram modes and discriminant criterion. Mach Vis Appl 10:331–338

    Article  Google Scholar 

  8. Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recogn 26:1277–1294

    Article  Google Scholar 

  9. Shaoo PK, Soltani S, Wong AKC, Chen YC (1988) Survey: a survey of thresholding techniques. Comput Vis Graph Image Process 41:233–260

    Article  Google Scholar 

  10. Snyder W, Bilbro G, Logenthiran A, Rajala S (1990) Optimal thresholding: a new approach. Pattern Recogn Lett 11:803–810

    Article  MATH  Google Scholar 

  11. Chen S, Wang M (2005) Seeking multi-thresholds directly from support vectors for image segmentation. Neurocomputing 67(4):335–344

    Article  Google Scholar 

  12. Chih-Chih L (2006) A novel image segmentation approach based on particle swarm optimization. IEICE Trans Fundam 89(1):324–327

    Google Scholar 

  13. Böhning D, Seidel W (2003) Recent developments in mixture models. Comput Stat Data Anal 41:349–357

    Article  MathSciNet  MATH  Google Scholar 

  14. Gupta L, Sortrakul T (1998) A Gaussian-mixture-based image segmentation algorithm. Pattern Recogn 31(3):315–325

    Article  Google Scholar 

  15. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  16. Zhang Z, Chen C, Sun J, Chan L (2003) EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern Recogn 36:1973–1983

    Article  MATH  Google Scholar 

  17. Park H, Amari S, Fukumizu K (2000) Adaptive natural gradient learning algorithms for various stochastic models. Neural Netw 13:755–764

    Article  Google Scholar 

  18. Redner RA, Walker HF (1984) Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev 26(2):195–239

    Article  MathSciNet  MATH  Google Scholar 

  19. Park H, Ozeki T (2009) Singularity and slow convergence of the EM algorithm for Gaussian mixtures. Neural Process Lett 29:45–59

    Article  Google Scholar 

  20. Ma J, Xu L, Jordan MI (2000) Asymptotic convergence rate of the EM algorithm for Gaussian mixtures. Neural Comput 12:2881–2907

    Article  Google Scholar 

  21. Xu L, Jordan MI (1996) On convergence properties for the EM algorithm. Neural Comput 8:129–151

    Article  Google Scholar 

  22. Xu L, Jordan MI (1996) On corvengence of the EM algorithm for Gaussian mixtures. Neural Comput 8(1):129–151

    Article  Google Scholar 

  23. Olsson R, Petersen K, Lehn-Schiøler T (2008) State-Space models: from the EM algorithm to a gradient approach. Neural Comput 19(4):1097–1111

    Article  MATH  Google Scholar 

  24. Narendra KS, Thathachar MAL (1989) Learning automata: an introduction. Prentice-Hall, London

    MATH  Google Scholar 

  25. Najim K, Poznyak AS (1994) Learning automata—theory and applications. Pergamon Press, Oxford

    MATH  Google Scholar 

  26. Seyed-Hamid Z (2008) Learning automata based classifier. Pattern Recogn Lett 29:40–48

    Article  Google Scholar 

  27. Zeng X, Zhou J, Vasseur C (2000) A strategy for controlling non-linear systems using a learning automaton. Automatica 36:1517–1524

    Article  MathSciNet  MATH  Google Scholar 

  28. Howell M, Gordon T (2001) Continuous action reinforcement learning automata and their application to adaptive digital filter design. Eng Appl Artif Intell 14:549–561

    Article  Google Scholar 

  29. Wu QH (1995) Learning coordinated control of power systems using inter-connected learning automata. Int J Electr Power Energy Syst 17:91–99

    Article  Google Scholar 

  30. Thathachar MAL, Sastry PS (2002) Varieties of learning automata: an overview. IEEE Trans Syst Man Cybern Part B: Cybern 32:711–722

    Article  Google Scholar 

  31. Zeng X, Liu Z (2005) A learning automaton based algorithm for optimization of continuous complex function. Inf Sci 174:165–175

    Article  MATH  Google Scholar 

  32. Beygi H, Meybodi MR (2006) A new action-set learning automaton for function optimization. Int J Franklin Inst 343:27–47

    Article  MathSciNet  MATH  Google Scholar 

  33. Frost GP (1998) Stochastic optimization of vehicle suspension control systems via learning automata. PhD thesis, Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leicestershire, LE81 3TU, UI, October 1998

    Google Scholar 

  34. Howell MN, Frost GP, Gordon TJ, Wu QH (1997) Continuous action reinforcement learning applied to vehicle suspension control. Mechatronics 7(3):263–276

    Article  Google Scholar 

  35. Howell MN, Best MC (2000) On-line PID tuning for engine idle-speed control using continuous action reinforcement learning automata. Control Eng Pract 8:147–154

    Article  Google Scholar 

  36. Kashki M, Abdel-Magid Y, Abido M (2008) A reinforcement learning automata optimization approach for optimum tuning of PID controller in AVR system. In: Huang D-S et al (eds) Advanced intelligent computing theories and applications. With aspects of artificial intelligence. ICIC 2008, LNAI 5227, pp 684–692

    Google Scholar 

  37. Gonzalez RC, Woods RE (1992) Digital image processing. Addison Wesley, Reading

    Google Scholar 

  38. Baştürk A, Günay E (2009) Efficient edge detection in digital images using a cellular neural network optimized by differential evolution algorithm. Expert Syst Appl 36(8):2645–2650

    Article  Google Scholar 

  39. Lai C-C, Tseng D-C (2001) An optimal L-filter for reducing blocking artifacts using genetic algorithms. Signal Process 81(7):1525–1535

    Article  MATH  Google Scholar 

  40. Tseng D-C, Lai C-C (1999) A genetic algorithm for MRF-based segmentation of multispectral textured images. Pattern Recogn Lett 20(14):1499–1510

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita-Arimatea Díaz-Cortés .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Díaz-Cortés, MA., Cuevas, E., Rojas, R. (2017). Multi-threshold Segmentation Using Learning Automata. In: Engineering Applications of Soft Computing. Intelligent Systems Reference Library, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-319-57813-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57813-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57812-5

  • Online ISBN: 978-3-319-57813-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics