Skip to main content

Self-Aware Fog Computing in Private and Secure Spheres

  • Chapter
  • First Online:
Fog Computing in the Internet of Things

Abstract

In real-time health analytics, smart cities, military sensing systems, and others, big data analytics is enabled by the introduction of appropriate sensing and actuation systems. The introduction of next generation of sensing and actuation systems or the Internet of Things era has been facilitated by affordable low-power 32-bit microcontrollers combined with low-cost and effective sensors with appropriate power supplies, mobile and local data collection (local big data) capabilities, adaptive behavior using machine learning and evolving model-based behavior, etc. While Cloud computing offers big data processing and actuation capability at the server level, mist computing offers data processing and actuation capability at the very edge of the network. Fog computing offers the same capability in the middle at edge gateways. Mist computing is an enabler for many applications, which cannot be realized with alternative methods, such as smart cities, where city streets adapt to the changes happening in the city, socially intelligent houses where indoor environment management is integrated with inhabitants health monitoring, or military sensing systems where situational information is automatically deduced from raw data and delivered to the information consumers. While these visionary applications promise to change our environment and the way we interact with the environment, we face serious challenges in implementing these systems, such as reliability of data exchange between nodes and routers, power distribution, quality of decision-making, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Telia Eesti AS https://www.telia.eeSmartHomesolution. The service marketing has been discontinued since 2017.

References

  1. A.V. Dastjerdi, R. Buyya, Fog computing: helping the internet of things realize its potential. Computer 49, 112–116 (2016)

    Article  Google Scholar 

  2. J.S. Preden, K. Tammemäe, A. Jantsch, M. Leier, A. Riid, E. Calis, The benefits of self-awareness and attention in fog and mist computing. Computer 48 (7), 37–45 (2015)

    Article  Google Scholar 

  3. More Data, Less Energy: Making Network Standby More Efficient in Billions of Connected Devices (2014). https://www.iea.org/publications/freepublications/publication/more-data-less-energy.html

    Google Scholar 

  4. A. Jantsch, K. Tammemäe, A framework of awareness for artificial subjects, in Proceedings of the 2014 International Conference on Hardware/Software Codesign and System Synthesis. CODES ’14 (ACM, New York, 2014), pp. 20:1–20:3.

    Google Scholar 

  5. N. TaheriNejad, A. Jantsch, D. Pollreisz, Comprehensive observation and its role in self-awareness - an emotion recognition system example, in Proceedings of the Federated Conference on Computer Science and Information Systems, Gdansk (2016).

    Google Scholar 

  6. IEEE International Conference on Self-Adaptive and Self-Organizing Systems (2007–2016)

    Google Scholar 

  7. J. Pitt (ed.), The Computer after Me: Awareness and Self-Awareness in Autonomic Systems (Imperial College Press, London, 2014)

    Google Scholar 

  8. SelPhyS: workshop on self-aware cyber-physical systems, CPS Week, Vienna (2016)

    Google Scholar 

  9. N. Capodieci, E. Hart, G. Cabri, Designing self-aware adaptive systems: from autonomic computing to cognitive immune networks, in IEEE 7th International Conference on Self-Adaptation and Self-Organizing Systems Workshops (SASOW), 2013 (2013), pp. 59–64

    Google Scholar 

  10. S. Kounev, X. Zhu, J.O. Kephart, M. Kwiatkowska, Model-driven algorithms and architectures for self-aware computing systems (Dagstuhl Seminar 15041). Dagstuhl Rep. 5 (1), 164–196 (2015). [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2015/5038

  11. B. Broome, Data-to-Decisions: a transdisciplinary approach to decision support efforts at ARL, in Proceedings of the Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR III, vol. 8389 (SPIE, 2012)

    Google Scholar 

  12. J.O. Kephart, D.M. Chess, The vision of autonomic computing. Computer 36 (1), 41–50 (2003)

    Article  MathSciNet  Google Scholar 

  13. A.Y. Zomaya (ed.), Handbook of Nature-Inspired and Innovative Computing (Springer, Berlin, 2006)

    Google Scholar 

  14. C. Müller-Schloer, H. Schmeck, T. Ungerer (eds.), Organic Computing — A Paradigm Shift for Complex Systems (Birkhauser, Basel, 2011)

    MATH  Google Scholar 

  15. M.T. Higuera-Toledano, U. Brinkschulte, A. Rettberg (eds.), Self-Organization in Embedded Real-Time Systems (Springer, Basel, 2013)

    Google Scholar 

  16. B. Cheng, R. de Lemos, P. Inverardi, J. Magee (eds.), Software Engineering for Self-Adaptive Systems. Programming and Software Engineering (Springer, New York, 2009)

    Google Scholar 

  17. D. Vernon, G. Metta, G. Sandini, A survey of artificial cognitive systems: Implications for the autonomous development of mental capabilities in computational agents. IEEE Trans. Evol. Comput. 11 (2), 151–180 (2007)

    Article  Google Scholar 

  18. P.R. Lewis, M. Platzner, B. Rinner, J. Torresen, X. Yao (eds.), Self-Aware Computing Systems: An Engineering Approach (Springer, New York, 2016)

    Google Scholar 

  19. N. Dutt, A. Jantsch, S. Sarma, Towards smart embedded systems: a self-aware system-on-chip perspective. ACM Trans. Embed. Comput. Syst. (2016). Invited. Special Issue on Innovative Design Methods for Smart Embedded Systems

    Google Scholar 

  20. N. Dutt, A. Jantsch, S. Sarma, Self-Aware Cyber-Physical Systems-on-Chip, in Proceedings of the International Conference for Computer Aided Design, Austin, TX (2015). Invited

    Google Scholar 

  21. Vital signs monitoring devices market: Increasing usage in home care settings and sports industry fuelling demand: Global industry analysis and opportunity assessment 2015–2025, London (2015). [Online]. Available: http://www.futuremarketinsights.com/reports/vital-signs-monitoring-devices-market

  22. R. Morgan, F. Williams, M. Wright, An early warning scoring system for detecting developing critical illness. Clin. Intensive Care 8 (2), 100 (1997)

    Google Scholar 

  23. J. McGaughey, F. Alderdice, R. Fowler, A. Kapila, A. Mayhew, M. Moutray, Outreach and early warning systems (EWS) for the prevention of intensive care admission and death of critically ill adult patients on general hospital wards. Cochrane Database Syst. Rev. 18 (3) (2007)

    Google Scholar 

  24. D. Georgaka, M. Mparmparousi, M. Vitos, Early warning systems. Hosp. Chron. 7 (1), 37–43 (2012)

    Google Scholar 

  25. A. Anzanpour, I. Azimi, M. Götzinger, A.M. Rahmani, N. TaheriNejad, P. Liljeberg, A. Jantsch, N. Dutt, Self-awareness in remote health monitoring systems using wearable electronics, in Proceedings of Design and Test Europe Conference (DATE), Lausanne (2017)

    Google Scholar 

  26. A. Anzanpour, A.M. Rahmani, P. Liljeberg, H. Tenhunen, Context-aware early warning system for in-home healthcare using internet-of-things, in Proceedings of the International Conference on IoT Technologies for HealthCare (HealthyIoT’15). Lecture Notes of the Institute for Computer Science (Springer, Berlin, 2015)

    Google Scholar 

  27. M. Götzinger, N. Taherinejad, A.M. Rahmani, P. Liljeberg, A. Jantsch, H. Tenhunen, Enhancing the early warning score system using data confidence, in Proceedings of the 6th International Conference on Wireless Mobile Communication and Healthcare (MobiHealth), Milano (2016)

    Google Scholar 

  28. Important Facts about Falls (2016). [Online]. Available: http://www.cdc.gov/homeandrecreationalsafety/falls/adultfalls.html

  29. I.-M. Lee et al., Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380 (9838), 219–229 (2012)

    Article  Google Scholar 

  30. G. Sprint, D.J. Cook, Using smart homes to detect and analyze health events. Computer 49, 29–37 (2016)

    Article  Google Scholar 

  31. R. Igual, C. Medrano, I. Plaza, Challenges, issues and trends in fall detection systems. BioMed. Eng. Online 12 (1), 66 (2013)

    Google Scholar 

  32. L. Dasenbrock, A. Heinks, M. Schwenk, J. Bauer, Technology-based measurements for screening, monitoring and preventing frailty. Zeitschrift für Gerontologie und Geriatrie 49 (7), 581–595 (2016)

    Article  Google Scholar 

  33. A. Tessier, M.-D. Beaulieu, C. Mcginn, R. Latulippe, Effectiveness of reablement: a systematic review. Healthcare Policy 11 (4), 49–59 (2016)

    Google Scholar 

  34. S. Billinger, R. Arena, J. Bernhardt et al., Physical activity and exercise recommendations for stroke survivors. Stroke 45 (8), 2532–2553 (2014)

    Article  Google Scholar 

  35. M.S. Kuster, Exercise recommendations after total joint replacement. Sports Med. 32 (7), 433–445 (2002)

    Article  Google Scholar 

  36. G.D. Abowd, A.K. Dey, P.J. Brown, N. Davies, M. Smith, P. Steggles, Towards a better understanding of context and context-awareness, in Handheld and Ubiquitous Computing (HUC), ed. by H.W. Gellersen. Lecture Notes in Computer Science, vol. 1707 (Springer, Berlin/Heidelberg, 1999)

    Google Scholar 

  37. J.-P. Vasseur, A. Dunkels, Interconnecting Smart Objects with IP: The Next Internet (Morgan Kaufmann, Amsterdam, 2010)

    Google Scholar 

  38. P. Harrington, Machine Learning in Action (Manning Publications, Greenwich, 2012)

    Google Scholar 

  39. S. Astapov, A. Riid, A hierarchical algorithm for moving vehicle identification based on acoustic noise analysis, in Proceedings of the 19th International Conference Mixed Design of Integrated Circuits and Systems: 19th International Conference Mixed Design of Integrated Circuits and Systems MIXDES 2012 (2012), pp. 467–472

    Google Scholar 

  40. D. Graupe, Deep Learning Neural Networks. Design and Case Studies (World Scientific, Singapore, 2016)

    Google Scholar 

  41. A. Lavin, S. Ahmad, Evaluating real-time anomaly detection algorithms - the numenta anomaly benchmark, in 14th International Conference on Machine Learning and Applications (IEEE ICMLA) (2015)

    Google Scholar 

  42. M.A. Hassan, M. Xiao, Q. Wei, S. Chen, Help your mobile applications with fog computing, in 12th Annual IEEE International Conference on Sensing, Communication, and Networking - Workshops (SECON Workshops) (2015)

    Google Scholar 

  43. pettitda, Road Testing the Raspberry Pi 3 with HTM: Building the Software for 32-bit ARM (2016). https://www.element14.com/community/groups/roadtest/blog/2016/06/07/road-testing-the-raspberry-pi-3-with-nupic

  44. Expanding the All Programmable SoC Portfolio (2016). [Online]. Available: https://www.xilinx.com/products/silicon-devices/soc.html

  45. J. Hawkins, S. Ahmad, Why neurons have thousands of synapses, a theory of sequence memory in neocortex. Front. Neural Circuits 10 (23), 1–13 (2015). https://doi.org/10.3389/fncir.2016.00023

    Google Scholar 

  46. V.B. Mountcastle, The columnar organization of the neocortex. Brain 120, 701–722 (1997)

    Article  Google Scholar 

  47. M. Megías, Z. Emri, T. Freund, A. Gulyás, Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalle Tammemäe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Tammemäe, K., Jantsch, A., Kuusik, A., Preden, JS., Õunapuu, E. (2018). Self-Aware Fog Computing in Private and Secure Spheres. In: Rahmani, A., Liljeberg, P., Preden, JS., Jantsch, A. (eds) Fog Computing in the Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-319-57639-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57639-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57638-1

  • Online ISBN: 978-3-319-57639-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics