Skip to main content

Abstract

A supervised learning algorithm which uses an automatic inductive approach to recognise patterns in data (Cracknell and Reading 2014); it is a means of prediction based on the properties learnt from a large set of training data, and performance is judged by its ability to reproduce known knowledge. Ideally, such a system should be able to improve its performance over time, learning from its mistakes. Although the term “machine learning” was introduced in the late 1950s (Samuel 1959; Felsen 1976), it was the development of the Boltzmann machine (presumably named for the Austrian physicist, Ludwig Eduard Boltzmann (1844–1906), whose development of statistical mechanics showed how the properties of atoms determine the physical properties of matter), a type of artificial neural network and Markov random field network consisting of symmetrically connected, neuron-like units that make stochastic decisions about whether to be on or off. It has a simple learning algorithm which allows it to discover interesting features which represent complex regularities in the pattern vectors of the training set. It also contains “hidden” units which are not directly influenced by the values of a pattern vector but rather by the values assigned to the “visible” nodes which are so influenced (Hinton and Sejnowski 1983; Ackley et al. 1985; Michalski et al. 1983). This work led to the present generation of algorithms which have extended the approach. Earth science applications are discussed by Oommen et al. (2008), Waske and Braun (2009), Leverington (2010), Leverington and Moon (2012), Yu et al. (2012) and Cracknell and Reading (2014). See also naïve Bayes, k -nearest neighbours, random forests and support vector machines, pattern analysis, pattern classification, pattern recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • ACKLEY, D.H., HINTON, G.E. and SEJNOWSKI, T.J. (1985). A learning algorithm for Boltzmann machines. Cognitive Science, 9, 147–169.

    Article  Google Scholar 

  • ADCOCK, R.J. (1877). Note on the method of least squares. The Analyst (Des Moines, IA), 4, 183–184.

    Google Scholar 

  • ADCOCK, R.J. (1878). A problem in least squares. The Analyst (Des Moines, IA), 5, 53–54.

    Google Scholar 

  • ADRAIN, R. (1818). Investigation of the Figure of the Earth and of gravity in different latitudes. Transactions of the American Philosophical Society, 1, 119–135.

    Article  Google Scholar 

  • AGOCS, W.B. (1951). Least squares residual anomaly determination. Geophysics, 16, 686–696.

    Article  Google Scholar 

  • AGTERBERG, F.P. (2007). New applications of the model of de Wijs in regional geochemistry. Mathematical Geology, 39, 1–25.

    Article  Google Scholar 

  • AGTERBERG, F.P. and FABBRI, A.G. (1978). Spatial correlation of stratigraphic units quantified from geological maps. Computers & Geosciences, 4, 285–294.

    Article  Google Scholar 

  • AITCHISON, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society, ser. B, 44, 139–177.

    Google Scholar 

  • AITCHISON, J. (1984). The statistical analysis of geochemical compositions. Journal of the International Association for Mathematical Geology, 16, 531–564.

    Article  Google Scholar 

  • AITCHISON, J. (1986). The statistical analysis of compositional data. London, Chapman and Hall.

    Book  Google Scholar 

  • AITCHISON, J. (1999). Logratios and natural laws in compositional data analysis. Mathematical Geology, 31, 563–580.

    Article  Google Scholar 

  • AITCHISON, J. and BROWN, J.A.C. (1957). The lognormal distribution with special reference to its uses in economics. Cambridge, Cambridge University Press.

    Google Scholar 

  • ALBARÈDE, F. and PROVOST, A. (1977). Petrological and geochemical mass-balance equations: an algorithm for least-square fitting and general error analysis. Computers & Geosciences, 3, 309–326.

    Article  Google Scholar 

  • ALBERT, A.A. (1937). Modern higher algebra. Chicago, IL, University of Chicago Press.

    Google Scholar 

  • ALLEN, J.R.L. (1974). Studies in fluviatile sedimentation: Lateral variation in some fining‐upwards cyclothems from the Red Marls, Pembrokeshire. Geological Journal , 9, 1–6.

    Article  Google Scholar 

  • ANDERSON, H.L. (1986). Metropolis, Monte Carlo, and the MANIAC. Los Alamos Science, 14, 98–107.

    Google Scholar 

  • ANDERSON, R.Y. and KOOPMANS, L.H. (1963). Harmonic analysis of varve time series. Journal of Geophysical Research, 68, 877–893.

    Article  Google Scholar 

  • ANONYMOUS (1806). Essai sur une manière de représenter les quantités imaginaires dans les constructions géométriques [On a method of representing imaginary quantities in geometrical constructions]. Paris, Mme. Veuve Blanc.

    Google Scholar 

  • ARGAND, R. (1874). Essai sur une manière de représenter les quantités imaginaires dans les constructions géométriques. 2nd edn., Paris, Gauthier-Villars.

    Google Scholar 

  • ARIAS, M., GUMIEL, P., SANDERSON, D.J. and MARTIN-IZARD, A. (2011). A multifractal simulation model for the distribution of VMS [volcanogenic massive sulphide ore] deposits in the Spanish segment of the Iberian Pyrite Belt. Computers & Geosciences, 37, 1917–1927.

    Article  Google Scholar 

  • ATTNEAVE, F. (1950). Dimensions of similarity. American Journal of Psychology, 63, 516–556.

    Article  Google Scholar 

  • AZZALINI, A. and CAPITANIO, A. (1999). Statistical applications of the multivariate skew-normal distribution. Journal of the Royal Statistical Society, ser. B, 61, 579–602.

    Article  Google Scholar 

  • AZZALINI, A. and CAPITANIO, A. (2014). The skew-normal and related families. Institute of Mathematical Statistics Monograph. Cambridge, Cambridge University Press.

    Google Scholar 

  • BARBERI, F., FERRARA, G., SANTACROCE, R., TREUIL, M. and VARET, J. (1975). A transitional basalt-pantellerite sequence of fractional crystallization, the Boina Centre (Afar Rift, Ethiopia). Journal of Petrology, 16, 22–56.

    Article  Google Scholar 

  • BARNARD, G.A. (1963). Discussion of Professor Bartlett’s paper. Journal of the Royal Statistical Society, ser. B, 25, 294.

    Google Scholar 

  • BARNARD, T.E. (1975). The maximum entropy spectrum and the Burg technique. Advanced Signal Processing Technical Report no. 1, ALEX(03)-TR-75-01, Dallas, TX, Texas Instruments Inc.

    Google Scholar 

  • BARTLETT, M.S. (1939). A note on tests of significance in multivariate analysis. Proceedings of the Cambridge Philosophical Society, 35, 180–185.

    Google Scholar 

  • BATES, D.M. and WATTS, D.G. (1988). Nonlinear regression analysis and its applications. New York, NY, John Wiley & Sons.

    Book  Google Scholar 

  • BEN-MENAHEM, A. and TOKSÖZ, M.N. (1962). Source mechanism from spectra of long-period seismic surface waves. 1. The Mongolian earthquake of December 4, 1937. Journal of Geophysical Research, 67, 1943–1955.

    Article  Google Scholar 

  • BERLANGA, J.M. and HARBAUGH, J.W. (1981). A computer procedure to analyse seismic data to estimate outcome probabilities in oil exploration, with an initial application in the Tabasco region of southeastern Mexico. Computers & Geosciences, 7, 59–98.

    Article  Google Scholar 

  • BERNŠTEIN, S.N. (1926a). Sur l’extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes [On the extension of the limit theorem of probability to sums of dependent quantities]. Mathematische Annalen, 97, 1–59.

    Article  Google Scholar 

  • BERNŠTEIN, S.N. (1926b). Sur les courbes de distribution des probabilités [On the curves of probability distributions]. Mathematische Zeitschrift, 24, 199 – 211.

    Article  Google Scholar 

  • BESAG, J. and DIGGLE, P.J. (1977). Simple Monte Carlo tests for spatial pattern. Applied Statistics, 26, 327–333.

    Article  Google Scholar 

  • BIRD, D.N. (1982). A linear programming approach to time-term analysis. Bulletin of the Seismological Society of America, 72, 2171-2180.

    Google Scholar 

  • BLACKITH, R.E. and REYMENT, R.A. (1971). Multivariate morphometrics. London, Academic Press.

    Google Scholar 

  • BLACKMAN, R.B. and TUKEY, J.W. (1958). The measurement of power spectra from the point of view of communications engineering. Bell System Technical Journal, 37, 185–282, 485–569.

    Article  Google Scholar 

  • BOBILLO-ARES, N.C., ALLER, A., BASTIDA, F., MENÉNDEZ, O. and LISLE, R.J. (2015). StrainModeller: A Mathematica-based program for 3D analysis of finite and progressive strain. Computers & Geosciences, 78, 123–132.

    Article  Google Scholar 

  • BODE, H.W. (1945). Network analysis and feedback amplifier design. Princeton, NJ, Van Nostrand.

    Google Scholar 

  • BODE, H.W. and SHANNON, C.E. (1950). A simplified derivation of linear least square smoothing and prediction theory. Proceedings of the Institute of Radio Engineers, 38, 417–425.

    Google Scholar 

  • BOOKSTEIN, F.L. (1991). Morphometric tools for landmark data. New York, NY, Cambridge University Press.

    Google Scholar 

  • BOOKSTEIN, F.L. (1995). The morphometric synthesis for landmarks and edge elements in images. Terra Nova, 7, 393–407.

    Article  Google Scholar 

  • BOTBOL, J.M. (1970). A model way to analyse the mineralogy of base metal mining districts. Mining Engineering, 22 (3), 56–59.

    Google Scholar 

  • BOTBOL, J.M., SINDING-LARSEN, R., MCCAMMON, R.B. and GOTT, G.B. (1977). Weighted characteristic analysis of spatially dependent mineral deposit data. Journal of the International Association for Mathematical Geology, 9, 309–312.

    Article  Google Scholar 

  • BOULIGAND, G. (1928). Ensembles impropres et nombre dimensionnel [Improper and dimensional number sets]. Bulletin des Sciences Mathématiques, ser. 2, 52, 320–344, 361–376.

    Google Scholar 

  • BOULIGAND, G. (1929). Sur la notion d’ordre de mesure d'un ensemble plan [On the notion of order of measuring a general plane]. Bulletin des Sciences Mathématiques, ser. 2, 53, 185–192.

    Google Scholar 

  • BRACE, W.F. (1961). Mohr construction in the analysis of large geologic strain. Geological Society of America Bulletin, 72, 1059–1080.

    Article  Google Scholar 

  • BRATTEN, D. (1958). New results in the theory and techniques of Chebyshev fitting. Abstract no. 546-34. Notices of the American Mathematical Society, 5, 248.

    Google Scholar 

  • BRINCK, J. (1971). MIMIC, the prediction of mineral resources and long-term price trends in the non-ferrous metal mining industry is no longer Utopian. Eurospectra, 10, 46–56.

    Google Scholar 

  • BROTZEN, O. (1975). Analysis of multivariate point distributions and chemical grouping of rocks. Journal of the International Association for Mathematical Geology, 7, 191–214.

    Article  Google Scholar 

  • BRYAN, W.B., FINGER, L.W. and CHAYES, F. (1969). Estimating proportions in petrographic mixing equations by least-squares approximation. Science, 163, 926–927.

    Article  Google Scholar 

  • BUCCIANTI, A., MATEU-FIGUERAS, G. and PAWLOWSKY-GLAHN, V. (eds.) (2006). Compositional data analysis in the geosciences: From theory to practice. London, The Geological Society.

    Google Scholar 

  • BUCK, S.W. et al [names not stated] (1973). Traverse gravimeter experiment. Final report. R-739 (NASA-CR-128948), Cambridge, MS, Charles Stark Draper Laboratory, Massachusetts Institute of Technology.

    Google Scholar 

  • BULAND, R. (1986). Uniform reduction error analysis. Bulletin of the Seismological Society of America, 76, 217–230.

    Google Scholar 

  • BURCH, C.R. and MURGATROYD, P.N. (1971). Broken-line and complex frequency distributions. Journal of the International Association for Mathematical Geology, 3, 135–155.

    Article  Google Scholar 

  • BURG, J.P. (1967). Maximum entropy spectral analysis. Proceedings of the 37th Meeting of the Society of Exploration Geophysicists, Oklahoma City, Oklahoma, 31 October 1967, pp. 34–41. In: CHILDERS, D.G. (ed.). (1978). Modern spectrum analysis. New York, NY, IEEE Press, 34–39.

    Google Scholar 

  • BURG, J.P. (1968). A new analysis technique for time series data. Paper given at: NATO Advanced Study Institute on signal processing with emphasis on underwater acoustics, 12–23 August 1968, Twente Institute of Technology, Enschede, The Netherlands. In: CHILDERS, D.G. (ed.). (1978). Modern spectrum analysis. New York, NY, IEEE Press, 42–48.

    Google Scholar 

  • BURG, J.P. (1975). Maximum entropy spectral analysis. Doctoral dissertation. Stanford Exploration Project Report no. 6, Stanford, CA, Stanford Exploration Project, Stanford University (online: http://sepwww.stanford.edu/data/media/public/oldreports/sep06/).

  • BURMA, B.H. (1948). Studies in quantitative paleontology, I. Some aspects of the theory and practice of quantitative invertebrate paleontology, Journal of Paleontology, 22, 725–761.

    Google Scholar 

  • BURMA, B.H. (1949). Studies in quantitative paleontology. II. Multivariate analysis – a new analytical tool for paleontology and geology, Journal of Paleontology, 23, 95–103.

    Google Scholar 

  • BURMA, B.H. (1953). Studies in quantitative paleontology. III. An application of sequential analysis to the comparison of growth stages and growth series. The Journal of Geology, 61, 533–543.

    Article  Google Scholar 

  • BUTTKUS, B. (1991). Spektralanalyse und Filtertheorie in der angewandten Geophysik. Berlin, Springer-Verlag.

    Book  Google Scholar 

  • BUTTKUS, B. (2000). Spectral analysis and filter theory in applied geophysics [translated by C NEWCOMB]. . Berlin, Springer-Verlag.

    Google Scholar 

  • CAMINA, A.R. and JANACEK, G.J. (1984). Mathematics for seismic data processing and interpretation. London, Graham and Trotman.

    Book  Google Scholar 

  • CANTOR, G. (1874). Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen [On a property of the collection of all real algebraic numbers]. Journal für die reine und angewandte Mathematik, 77, 258–262.

    Google Scholar 

  • CAPON, J. (1969). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57, 1408–1418.

    Google Scholar 

  • CASELLA, G. and GEORGE, E.I. (1992). Explaining the Gibbs sampler. American Statistician, 46, 167–174.

    Google Scholar 

  • CAYLEY, A. (1857). A memoir on the theory of matrices [Abstract]. Proceedings of the Royal Society of London, 9, 100–101.

    Google Scholar 

  • CAYLEY, A. (1858). A memoir on the theory of matrices. Philosophical Transactions of the Royal Society, London, 148, 17–37.

    Article  Google Scholar 

  • ČERVENÝ, V. (1972). Seismic rays and ray intensities in inhomogeneous anisotropic media. Geophysical Journal of the Royal Astronomical Society, 29, 1–13.

    Article  Google Scholar 

  • CHAR, B.W., GEDDES, K.O., GENTLEMAN, W.M. and GONNET, G.H. (1983). The design of Maple: A compact, portable and powerful computer algebra system. In: VAN HULZEN, J.A. (ed.). Computer Algebra (Proceedings of EUROCAL ’83). Lecture Notes in Computer Science 162. Berlin, Springer-Verlag, 101–115.

    Google Scholar 

  • CHAYES, F. (1956). Petrographic modal analysis. New York, NY, John Wiley & Sons.

    Google Scholar 

  • CHEB-TERRAB, E.S., COOPER, J. and WILSON, B.W. (2008). General mathematical software tools in geophysics [Canadian Society of Exploration Geophysicists] Recorder, 33, 58–59.

    Google Scholar 

  • CHEBYSHEV, P.L. (1867a). O srednih veličinah [On average values]. Matematicheskii Sbornik, 2 (2), 1–9.

    Google Scholar 

  • CHEBYSHEV, P.L. (1867b). Des valeurs moyennes [On average values; translated by N. DE KHANIKOF]. Liouville's Journal de Mathématiques Pures et Appliquées, ser. 2, 12, 177–184.

    Google Scholar 

  • CHEENEY, R.F. (1983). Statistical methods in geology. London, George Allen & Unwin.

    Google Scholar 

  • CHEN, J., KRAVCHINSKY, V.A. and LIU, X. (2015). The 13 million year Cenozoic pulse of the Earth. Earth and Planetary Science Letters, 431, 256–263.

    Article  Google Scholar 

  • CHENG, Q. (1999). Multifractality and spatial statistics. Computers & Geosciences, 25, 949–961.

    Article  Google Scholar 

  • CHENG, Q., XU, Y. and GRUNSKY, E. (2001). Multifractal power spectrum-area method for geochemical anomaly separation. Natural Resources Research, 9, 43–51.

    Article  Google Scholar 

  • CHIB, S. and GREENBERG, E. (1995). Understanding the Metropolis-Hastings algorithm. American Statistician, 49, 327–336.

    Google Scholar 

  • CHORK, C.Y. and GOVETT, G.J.S. (1979). Interpretation of geochemical soil surveys by block averaging. Journal of Geochemical Exploration, 11, 53–71.

    Article  Google Scholar 

  • CHRISTAKOS, G. (1990). A Bayesian/maximum-entropy view to the spatial estimation problem. Mathematical Geology, 22, 763–776.

    Article  Google Scholar 

  • CLARK, M.W. (1976c). Some methods for statistical analysis of multimodal distributions and their application to grain size data. Journal of the International Association for Mathematical Geology, 8, 267–282.

    Article  Google Scholar 

  • CLARK, M.W. and CLARK, I. (1976). A sedimentological pattern recognition problem. In: MERRIAM, D.F. (ed.). Quantitative techniques for the analysis of sediments: Proceedings of an international symposium held at the IX International Sedimentological Congress in Nice, France, on 8 July 1975. Oxford, Pergamon Press, 121–141.

    Google Scholar 

  • CLARKE, L. (1978). An oblique factor analysis solution for the analysis of mixtures. Journal of the International Association for Mathematical Geology, 10, 225–242.

    Article  Google Scholar 

  • CLAY, C.S. and LIANG, W.L. (1962). Continuous seismic profiling with matched filter detector. Geophysics, 27, 786–795.

    Google Scholar 

  • COLE, T.W. (1973). Periodicities in Solar activity. Solar Physics, 30, 103–110.

    Article  Google Scholar 

  • COURNOT, A.A. (1843). Exposition de la théorie des chances et des probabilités [Exposition of the theory of chance and probabilities.]. Paris, L. Hachette.

    Google Scholar 

  • CORYELL, C.G., CASE, J.W. and WINCHESTER, J.W. (1963). A procedure for geochemical interpretation of terrestrial rare-earth abundance patterns. Journal of Geophysical Research, 68, 559–566.

    Article  Google Scholar 

  • CRACKNELL, M.J. and READING, A.M. (2014). Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Computers & Geosciences, 63, 22–33.

    Article  Google Scholar 

  • CROSS, W., IDDINGS, J.P., PIRSSON, L.V. and WASHINGTON, H.S. (1902). A quantitative chemico-mineralogical classification and nomenclature of igneous rocks. Journal of Geology, 10, 555–693.

    Article  Google Scholar 

  • CROSS, W., IDDINGS, J.P., PIRSSON, L.V. and WASHINGTON, H.S. (1903). Quantitative classification of igneous rocks. Chicago, University of Chicago Press.

    Google Scholar 

  • CROTWELL, H.P., OWENS, T.J. and RITSEMA, J. (1999). The TauP toolkit: Flexible seismic travel-time and ray-path utilities. Seismological Research Letters, 70, 154–160.

    Article  Google Scholar 

  • CUMMINGS, B. (1963). How St. Joseph Lead processes engineering, geological data. Engineering and Mining Journal, 164, 96–101.

    Google Scholar 

  • CURRIE, I.D. (1995). Maximum likelihood and Mathematica. Applied Statistics, 44, 379–394.

    Article  Google Scholar 

  • CURTIS, P.C. and FRANK, W.L. (1959). An algorithm for the determination of the polynomial of best minimax approximation to a function defined on a finite point set. Journal of the ACM, 6, 395–404.

    Article  Google Scholar 

  • DACEY, M.F. and KRUMBEIN, W.C. (1970). Markovian models in stratigraphic analysis. Journal of the International Association for Mathematical Geology, 2, 175–191.

    Article  Google Scholar 

  • DACHS, E. (1998). PET: Petrological Elementary Tools for Mathematica. Computers & Geosciences, 24, 219–235.

    Article  Google Scholar 

  • DACHS, E. (2004). PET: Petrological Elementary Tools for Mathematica: an update. Computers & Geosciences, 30, 173–182.

    Article  Google Scholar 

  • DAUBECHIES, I. (1988). Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 41, 909–996.

    Article  Google Scholar 

  • DAUBECHIES, I. (1990). The wavelet transform, time-frequency localisation and signal processing. IEEE Transactions on Signal Processing, SP-36, 961–1005.

    Google Scholar 

  • DAUBECHIES, I., GROSSMAN, A. and MEYER, Y. (1986). Painless nonorthogonal expansions. Journal of Mathematical Physics, 27, 1271–1283.

    Article  Google Scholar 

  • DAVENPORT, C.B. (1899). Statistical methods: with special reference to biological variation. London, Chapman and Hall.

    Book  Google Scholar 

  • DAVENPORT, C.B. (1900). A history of the development of the quantitative study of variation. Science. NEW SER., 12, 864–870.

    Google Scholar 

  • DAVIS, M.W. (1987b). Generating large stochastic simulations – The matrix polynomial approximation method. Mathematical Geology, 19, 99–107.

    Article  Google Scholar 

  • DE WIJS, H.J. (1951). Statistics of ore distribution. Geologie en Mijnbouw, 30, 365–375.

    Google Scholar 

  • DELESSE, A. (1848). Procédé méchanique pour déterminer la composition des roches [Mechanical procedure for determining the composition of rocks]. Annales des Mines, ser. 4, 13, 379–388.

    Google Scholar 

  • DEMIRMEN, F. (1971). Counting error in petrographic point count analysis: A theoretical and experimental study. Journal of the International Association for Mathematical Geology, 3, 15–42.

    Article  Google Scholar 

  • DEMIRMEN, F. (1972). Operator error in point count analysis: A theoretical approach. Journal of the International Association for Mathematical Geology, 4, 35–44.

    Article  Google Scholar 

  • DEUTSCH, C.V. and COCKERHAM, P.W. (1994). Practical considerations in the application of simulated annealing to stochastic simulation. Mathematical Geology, 26, 67–82.

    Article  Google Scholar 

  • DIELMAN, T.E. (1984). Least absolute value estimation in regression models: an annotated bibliography. Communications in Statistics – Theory and Methods, 13, 513–541.

    Article  Google Scholar 

  • DODGE, Y. (1987). Statistical data analysis based on the L 1 norm and related methods. Amsterdam, North-Holland.

    Google Scholar 

  • DODGE, Y. and MARRIOTT, F.H.C. (eds.) (2003). A dictionary of statistical terms. 6th edn., Oxford, Oxford University Press.

    Google Scholar 

  • DONSKER, M.D. and KAC, M. (1950). The Monte Carlo method and its applications. In: Proceedings, Seminar on Scientific Computation, November 1949. New York, NY, International Business Machines Corporation, 74–81.

    Google Scholar 

  • DOOB, J.L. (1953). Stochastic processes. New York, NY, John Wiley & Sons.

    Google Scholar 

  • DOVETON, J.H. (1971). An application of Markov chain analysis to the Ayrshire coal measures succession. Scottish Journal of Geology, 7, 11–27.

    Article  Google Scholar 

  • DOVETON, J.H. and DAVIS, J.C. (1993). R.G.V. Eigen: Legendary father of mathematical geology. In: DAVIS, J.C. and HERZFELD, U.C. (eds.). Computers in geology. 25 years of progress. Oxford, Oxford University Press, 287–294.

    Google Scholar 

  • DRAPER, N.R. and SMITH, H. (1981). Applied regression analysis. 2nd edn., New York, NY., John Wiley & Sons.

    Google Scholar 

  • DUTKA, J. (1996). On Gauss’ priority in the discovery of the method of least squares. Archive for the History of Exact Sciences, 49, 355–370.

    Article  Google Scholar 

  • DWASS, M. (1957). Modified randomization tests for nonparametric hypotheses. The Annals of Mathematical Statistics, 28, 181–187.

    Article  Google Scholar 

  • DZWINEL, W., YUEN, D.A., BORYCZKO, K., BEN-ZION, Y., YOSHIOKA, S. and ITO, T. (2005). Nonlinear multidimensional scaling and visualization of earthquake clusters over space, time and feature space. Nonlinear Processes in Geophysics, 12, 117–128.

    Article  Google Scholar 

  • EDDELBUETTEL, D. (2006). Random: An R package for true random numbers [online: https://cran.r-project.org/web/packages/random/random-intro.pdf].

  • EDDINGTON, A. (1914). Stellar movements and the structure of the universe. London, Macmillan.

    Google Scholar 

  • EFRON, B. and TIBSHIRANI, R.J. (1993). An introduction to the bootstrap. New York, NY, Chapman and Hall.

    Book  Google Scholar 

  • EHRLICH, R. and FULL, W.E. (1987). Sorting out geology – Unmixing mixtures. In: SIZE, W.B. (ed.). Use and abuse of statistical methods in the Earth Sciences. New York, Oxford University Press, 33–46.

    Google Scholar 

  • EISLER, J.D. and SILVERMAN, D. (1947). Multichannel pen recorder for electrical logging operations. Geophysics, 12, 414–423.

    Article  Google Scholar 

  • ELEWA, A.M.T. (ed.) (2004). Morphometrics: Applications in palaeontology and biology. Berlin, Springer-Verlag.

    Google Scholar 

  • ELFEKI, A.M. and DEKKING, F.M. (2001). A Markov chain model for subsurface characterization: Theory and applications. Mathematical Geology, 33, 569–589.

    Article  Google Scholar 

  • EVANS, G., HOWARTH, R.J. and NOMBELA, M.A. (2003). Metals in the sediments of Ensenada de san Simon (inner Ria de Vigo), Galicia, NW Spain. Applied Geochemistry, 18, 973–996.

    Article  Google Scholar 

  • EVERTSZ, C.J.G. and MANDELBROT, B.B. (1992). Multifractal measures. Appendix B. In: PEITGEN, H.-O. and SAUPE, C. (eds.). Chaos and fractals. New York, NY, Springer-Verlag, 921–953.

    Google Scholar 

  • FABBRI, A.G. (1980). GIAPP: Geological image-analysis program package for estimating geometrical probabilities. Computers & Geosciences, 6, 153–161.

    Article  Google Scholar 

  • FARGE, M., GROSSMAN, A., MEYER, Y., PAUL, T., RISSET, J.-C., SARACCO, G. and TORRÉSANI, B. (2012). Les ondelettes et le CRIM [Wavelets and the Centre International de Rencontres Mathématiques de Luminy]. La Gazette des Mathematicians, 131, 47–57.

    Google Scholar 

  • FEDER, J. (1988). Fractals. New York, NY, Plenum Press.

    Book  Google Scholar 

  • FELSEN, J. (1976.). A man-machine investment decision system. International Journal of Man-Machine Studies, 8, 169–193.

    Google Scholar 

  • FERRAES, S.G. (2003). The conditional probability of earthquake occurrence and the next large earthquake in Tokyo, Japan. Journal of Seismology, 7, 145–153.

    Article  Google Scholar 

  • FISHER, R.A. (1922a). On the interpretation of Chi-squared from contingency tables, and the calculation of P. Journal of the Royal Statistical Society, 85, 87–94.

    Article  Google Scholar 

  • FISHER, R.A. (1925a). Statistical methods for research workers. Edinburgh, Oliver and Boyd.

    Google Scholar 

  • FORGOTSON, J.M. (1960). Review and classification of quantitative mapping techniques. Bulletin of the American Association of Petroleum Geologists, 44, 83–100.

    Google Scholar 

  • FORSTER, M.A. and LISTER, G.S. (2010). Argon enters the retentive zone: reassessment of diffusion parameters of K-feldspar in the South Cyclades shear zone, Ios, Greece. In: SPALLA, M.I., MAROTTA, A.M. and GOSSO, G. (eds.). Advances in interpretation geological procedures: Refinement of multi-scale data and integration in numerical modelling. Special Publication 332. London, The Geological Society, 17–34.

    Google Scholar 

  • FOXALL, R. and BADDELEY, A. (2002). Nonparametric measures of association between a spatial point process and a random set, with geological applications. Journal of the Royal Statistical Society, ser. C, 51, 165–182.

    Google Scholar 

  • GABOR, D. (1946). Theory of communication. Journal of the Institution of Electrical Engineers, London, 93, 429–457.

    Google Scholar 

  • GALBRAITH, R.F. and GREEN, P.F. (1990). Estimating the component ages in a finite mixture. Nuclear Tracks and Radiation Measurement, 17, 197–206.

    Article  Google Scholar 

  • GALLAGHER, K., CHARVIN, K., NIELSEN, S., SAMBRIDGE, M. and STEPHENSON, J. (2009). Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for earth science problems. Marine and Petroleum Geology, 26, 525–535.

    Article  Google Scholar 

  • GARRETT, R.G. (1989). The chi-square plot: a tool for multivariate outlier recognition. Journal of Geochemical Exploration, 32, 319–341.

    Article  Google Scholar 

  • GAUSS, C.F. (1809a). Theoria motus corporum coelestium in sectionibus conicis solem ambientium [Theory of the motion of the heavenly bodies moving about the Sun in conic sections]. Hamburg, F. Perthes and I.H. Besser.

    Google Scholar 

  • GAUSS, C.F. (1809b [1857]). Determination of an orbit satisfying as nearly as possible any number of observations whatever. In: Theory of the motion of the heavenly bodies moving about the Sun in conic sections [translated from Latin by C.H. DAVIS]. Boston, MS, Little, Brown & Co, 249–273.

    Google Scholar 

  • GEMAN, S. and GEMAN, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6, 721–741.

    Article  Google Scholar 

  • GENOVESE, C.R. (2006). Measures [online: http://www.stat.cmu.edu/~genovese/class/iprob-S06/readings/apM.pdf].

  • GENTLE, J.E. (1998). Random number generation and Monte Carlo methods. New York, NY, Springer-Verlag.

    Book  Google Scholar 

  • GHIORSO, M.S. (1985). Chemical mass transfer in magmatic processes. I. Thermodynamic relations and numerical algorithms. Contributions to Mineralogy and Petrology, 90, 107–120.

    Google Scholar 

  • GHIORSO, M.S. and CARMICHAEL, I.S.E. (1985). Chemical mass transfer in magmatic processes. II. Applications in equilibrium crystallization, fractionation and assimilation. Contributions to Mineralogy and Petrology, 90, 121–141.

    Article  Google Scholar 

  • GOOGLE RESEARCH (2012). Google Books Ngram Viewer (v. 2.0) [online: https://books.google.com/ ngrams/info].

  • GRANT, J.A. (1986). The isocon diagram; a simple solution to Gresen’s equation for metasomatic alteration. Economic Geology, 81, 1976–1982.

    Article  Google Scholar 

  • GREENBERG, B.G. and SARHAN, A.E. (1959). Matrix inversion, its interest and application in analysis of data. Journal of the American Statistical Association, 54, 755–766.

    Google Scholar 

  • GREENOUGH, J.D. and OWEN, J.V. (2002). A petrochemical study of basaltic layering at Henley Harbour, Labrador, using multidimensional scaling. Atlantic Geology, 38, 161–175.

    Google Scholar 

  • GREENWOOD, H.J. (1967). The N-dimensional tie-line problem. Geochimica et Cosmochimica Acta, 31, 465–490.

    Article  Google Scholar 

  • GREENWOOD, H.J. (1968). Matrix methods and the phase rule in petrology. In: Proceedings of the XXIIIrd International Geological Congress, v. 6, Prague, Geological Institute of the Czechoslovak Academy of Sciences, 267–279.

    Google Scholar 

  • GREVILLE, T.N.E. (1959). The pseudoinverse of a rectangular or singular matrix and its application to the solution of systems of linear equations. SIAM Review, 1, 38–43.

    Article  Google Scholar 

  • GRIFFITHS, J.C. (1958). Petrography and porosity of the Cow Run Sand, St. Marys, West Virginia. Journal of Sedimentary Petrology, 28, 15–30.

    Article  Google Scholar 

  • GUBBINS, D. (2004). Time series analysis and inverse theory for geophysicists. Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • HADWIGER, H. (1950). Minkowskische Addition und Subtraktion beliebiger Punktmengen und die Theoreme von Erhard Schmidt [Minkowski addition and subtraction of arbitrary point sets and the theorems of Erhard Schmidt]. Mathematische Zeitschrift, 53, 210–218.

    Article  Google Scholar 

  • HAIGH, T., PRIESTLEY, M. and ROPE, C. (2014b). Engineering “The miracle of the ENIAC”: Implementing the Modern Code Paradigm. IEEE Annals of the History of Computing, 36 (2), 41–59.

    Article  Google Scholar 

  • HALL, A (1973). The median surface: a new type of trend surface. Geological Magazine, 110, 467–472.

    Article  Google Scholar 

  • HALSEY, T.C., JENSEN, M.H., KADANOFF, L.P., PROCACCIA, I. and SHRAIMAN, B.I. (1986). Fractal measures and their singularities: The characterisation of strange sets. Physical Review, A33, 1141–1151.

    Google Scholar 

  • HAMMERSLEY, J.M. and HANDSCOMB, D.C. (1964). Monte Carlo methods. London, Chapman and Hall.

    Book  Google Scholar 

  • HANSEN, T.M., CORDUA, K.S., LOOMS, M.K. and MOSEGAARD, K. (2013). SIPPI: A Matlab toolbox for sampling the solution to inverse problems with complex prior information. Computers & Geosciences, 52, 481–492.

    Article  Google Scholar 

  • HARBAUGH, J.W. and BONHAM-CARTER, G. (1970). Computer simulation in geology. New York, NY, John Wiley & Sons.

    Google Scholar 

  • HARBAUGH, J.W., DOVETON, J.H. and DAVIS, J.C. (1977). Probability methods in oil exploration. New York, NY, Wiley-Interscience.

    Google Scholar 

  • HARBAUGH, J.W. and MERRIAM, D.F. (1968). Computer applications in stratigraphic analysis. New York, NY, John Wiley & Sons.

    Google Scholar 

  • HARFF, J. and DAVIS, J.C. (1990). Regionalization in geology by multivariate classification. Mathematical Geology, 22, 573–588.

    Article  Google Scholar 

  • HARKRIDER, D.G. and ANDERSON, D.L. (1962). Computation of surface wave dispersion for multilayered anisotropic media. Bulletin of the Seismological Society of America, 52, 321–332.

    Google Scholar 

  • HARRIS, D.P. (1984). Mineral resources appraisal. Oxford, Clarendon Press.

    Google Scholar 

  • HARRIS, F.J. (1975). A maximum entropy filter. United States Naval Undersea Centre, San Diego, CA, Report NUC TP 441, Ft. Belvoir, Defense Technical Information Center [online: http://www.dtic.mil/docs/ citations/ADA007482].

  • HARTLEY, B.M. (2002). Exact travel time calculations for simple three-dimensional earth models in seismic exploration using computer algebra. Computers & Geosciences, 28, 327–336.

    Article  Google Scholar 

  • HARVEY, A.C. (1977). A comparison of preliminary estimators for robust regression. Journal of the American Statistical Association, 72, 910–913.

    Google Scholar 

  • HARVEY, G. (1822). On the method of minimum squares, employed in the reduction of experiments, being a translation of the appendix to an essay of Legendre’s entitled, “Nouvelles methodes pour la determination des orbites des cometes,” with remarks. The Edinburgh Philosophical Journal, 7, 292–301.

    Google Scholar 

  • HASTINGS, W.K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109.

    Article  Google Scholar 

  • HEIL, C. and WALNUT, D.F. (eds.) (2006). Fundamental papers in wavelet theory. Princeton, NJ, Princeton University Press.

    Google Scholar 

  • HENDERSON, P. (1984). General geochemical properties and abundances of the rare earth elements. In: HENDERSON, P. (ed.). Rare earth element geochemistry. Developments in geochemistry 2. Amsterdam, Elsevier, 1–32.

    Chapter  Google Scholar 

  • HERZFELD, U.C. and SONDERGARD, M.A. (1988). MAPCOMP – A FORTRAN program for weighted thematic map comparison. Computers & Geosciences, 14, 699–713.

    Article  Google Scholar 

  • HINTON, G.E. and SEJNOWSKI, T.J. (1983). Optimal Perceptual Inference. In: Proceedings, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 19–23, 1983, Silver Spring, MD, IEEE Computer Society Press, 448–453.

    Google Scholar 

  • HIRATA, K., AOYAGI, M., MIKADA, H., KAWAGUCHI, K., KAIHO, Y., IWASE, R., MORITA, S., FUJISAWA, I., et al. (2002). Real time geophysical measurements on the deep seafloor using submarine cable in the southern Kurile subduction zone. IEEE Journal of Oceanic Engineering , 27, 170–181.

    Article  Google Scholar 

  • HIRATA, T. and IMOTO, M. (1991). Multifractal analysis of spatial distribution of microearthquakes in the Kanto region. Geophysical Journal International, 107, 155–162.

    Article  Google Scholar 

  • HITCHCOCK, D.B. (2003). A history of the Metropolis-Hastings algorithm. The American Statistician, 57, 254–257.

    Article  Google Scholar 

  • HOERL, A.E. and KENNARD, R.W. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 8, 27–51.

    Google Scholar 

  • HOLDEN, L., HAUGE, R., SKARE, O. and SKORSTAD, A. (1998). Modeling of fluvial reservoirs with object models. Mathematical Geology, 30, 473–496.

    Article  Google Scholar 

  • HOPE, A.C.A. (1968). A simplified Monte Carlo significance test procedure. Journal of the Royal Statistical Society, ser. B, 30, 582–598.

    Google Scholar 

  • HOTELLING, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441, 498–520.

    Article  Google Scholar 

  • HOUSE OF COMMONS COMMITTEE ON SECRECY (1832). Report from the Committee on secrecy of the Bank of England Charter. Sessional Papers (1831–32). v. 6 (Paper 722). London, His Majesty’s Stationery Office.

    Google Scholar 

  • HOUSEHOLDER, A.S. and LANDAHL, D. (1945). Mathematical biophysics of the central nervous system. Bloomington, IL, Principia Press.

    Google Scholar 

  • HOWARTH, R.J. (2001a). A history of regression and related model-fitting in the earth sciences (1636?–2000). Natural Resources Research, 10, 241–286.

    Article  Google Scholar 

  • HOWELL, J.A. (1983). A FORTRAN 77 program for automatic stratigraphic correlation. Computers & Geosciences, 9, 311–327.

    Article  Google Scholar 

  • INTERNATIONAL BUSINESS MACHINES (1963). IBM 7040/7094 Programming systems. MAP (Macro Assembly Program) language. IBM Systems Reference Library, File 7090-21, Form C28-6311-1, New York, NY, International Business Machines Corporation.

    Google Scholar 

  • IRVING, J. and KNIGHT, R. (2006). Numerical modelling of ground-penetrating radar in 2-D using MATLAB. Computers & Geosciences, 32, 1235–1534.

    Article  Google Scholar 

  • JANOUŠEK, V. and MOYEN, J.-F. (2014). Mass balance modelling of magmatic processes in GCDkit. In: KUMAR, S. and SINGH, R.N. (eds.). Modelling of magmatic and allied processes. Society of Earth Scientists Series v. 83. Berlin, Springer, 225–238.

    Google Scholar 

  • JANOUŠEK, V., MOYEN, J.-F., MARTIN, H., ERBAN, V. and FARROW, C. (2016). Geochemical modelling of igneous processes – Principles and recipes in R Language. Bringing the power of R to a geochemical community. Berlin, Springer-Verlag.

    Book  Google Scholar 

  • JAYNES, E.T. (1963). Information theory and statistical mechanics. In: FORD, K.W. (ed.). Statistical physics, Brandeis Summer Institute in Theoretical Physics 1962, v. 3. New York, NY, Benjamin, 181–218.

    Google Scholar 

  • JEFFREYS, H. (1926). On the amplitudes of bodily seismic waves. Geophysical Journal, 1 (supplement s7), 334–348.

    Google Scholar 

  • JEFFREYS, H. (1932). An alternative to the rejection of observations. Proceedings of the Royal Society, London, ser. A, 137, 78–87.

    Google Scholar 

  • JEFFREYS, H. (1939). Theory of probability. Oxford, Clarendon Press.

    Google Scholar 

  • JOHNSON, S.E. and MOORE, R.R. (1993). Surface reconstruction from parallel serial sections using the program Mathematica: Example and source code. Computers & Geosciences, 19, 1023–1032.

    Article  Google Scholar 

  • JONES, H.J. and MORRISON, J.A. (1954). Cross-correlation filtering. Geophysics, 19, 660–683.

    Article  Google Scholar 

  • JONES, T.A. (1972). Multiple regression with correlated independent variables. Journal of the International Association for Mathematical Geology, 4, 203–218.

    Article  Google Scholar 

  • JONES, T.A. (2006a). MATLAB functions to analyze directional (azimuthal) data—I: Single-sample inference. Computers & Geosciences, 32, 166–175.

    Article  Google Scholar 

  • JONES, T.A. (2006b). MATLAB functions to analyze directional (azimuthal) data—II: Correlation. Computers & Geosciences, 32, 176–183.

    Article  Google Scholar 

  • JUSTICE, J. and DOUGHERTY, S. (1987). Generalized linear inversion applied to seismic data in one and two dimensions. Institute of Electrical and Electronics Engineers. In: ICASSP’87. Proceedings, International Conference on Acoustics, Speech, and Signal Processing, April 6–9, 1987, Dallas, Texas, New York, NY, Institute of Electrical and Electronics Engineers, 2249–2251.

    Google Scholar 

  • KAC, M. and DONSKER, M.D. (1950). A sampling method for determining the lowest eigenvalue and the principal eigenfunction of Schrödinger’s equation. Journal of Research of the National Bureau of Standards, 44, 551–557.

    Article  Google Scholar 

  • KAHN, H. (1950). Modifications of the Monte Carlo method. In: Proceedings, Seminar on Scientific Computation, November 1949. New York, NY, International Business Machines Corporation, 20–27.

    Google Scholar 

  • KARLIN, S. (1966). A first course in stochastic processes. New York, NY, Academic Press.

    Google Scholar 

  • KAY, S.M. and MARPLE, S.L., Jr, (1981). Spectrum analysis – a modern perspective. Proceedings of the IEEE, 69, 1380–1419.

    Google Scholar 

  • KE, P. (1992). A new approach to mass balance modelling: Applications to igneous petrology. Master of Science dissertation, Department of Geological Sciences, The University of British Columbia [online: https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0052616].

  • KELKER, D. and LANGENBERG, C.W. (1976). A mathematical model for orientation data from macroscopic cylindrical folds. Journal of the International Association for Mathematical Geology, 8, 549–559.

    Article  Google Scholar 

  • KEMPTHORNE, O. (1952). The design and analysis of experiments. New York, NY, John Wiley & Sons.

    Google Scholar 

  • KENDALL, M.G. and BUCKLAND, W.R. (1982). A dictionary of statistical terms. 4th edn., London, Longman.

    Google Scholar 

  • KERMACK, K.A. and HALDANE, J.B.S. (1950). Organic correlation and allometry. Biometrika, 37, 30–41.

    Article  Google Scholar 

  • KING, W.I. (1912). The elements of statistical method. London, Macmillan.

    Google Scholar 

  • KOCHERGIN, V.N. (1967). Issledovanie teplo- i massoobmena v geologičeskih geterogennyh sistemah [Research on heat and mass transfer in geological heterogeneous systems]. Journal of Engineering Physics, 13 (6), 945–954.

    Article  Google Scholar 

  • KOEFOED, O. (1969). An analysis of equivalence in resistivity sounding. Geophysical Prospecting, 17, 327–335.

    Article  Google Scholar 

  • KORN, H. (1938). Schichtung und absolute Zeit [Stratification and absolute time]. Neues Jahrbuch für Geologie und Paläontologie, A74, 51–166.

    Google Scholar 

  • KRAWCZYNSKI, M.J. and OLIVE, J.L. (2011). A new fitting algorithm for petrological mass-balance problems. In: American Geophysical Union Fall Meeting, 5–9 December 2011, San Francisco, CA, Abstract V53B-2613.

    Google Scholar 

  • KRIGE, D.G. (1966). A study of gold and uranium distribution in the Klerkdorp goldfield. Geoexploration, 4, 43–53.

    Article  Google Scholar 

  • KRUMBEIN, W.C. (1936a). Application of logarithmic moments to size frequency distributions of sediments. Journal of Sedimentary Petrology, 6, 35–47.

    Google Scholar 

  • KRUMBEIN, W.C. (1936b). The use of quartile measures in describing and comparing sediments. American Journal of Science, ser. 5, 32, 98–111.

    Article  Google Scholar 

  • KRUMBEIN, W.C. (1945). Recent sedimentation and the search for petroleum. AAPG Bulletin, 29, 1233–1261.

    Google Scholar 

  • KRUMBEIN, W.C. (1948). Lithofacies maps and regional sedimentary-stratigraphic analysis. Bulletin of the American Association of Petroleum Geologists, 32, 1909–1923.

    Google Scholar 

  • KRUMBEIN, W.C. and ABERDEEN, E. (1937). The sediments of Barataria Bay. Journal of Sedimentary Petrology, 7, 3–17.

    Article  Google Scholar 

  • KRUMBEIN, W.C. and DACEY, M.F. (1969). Markov chains and embedded Markov chains in geology. Journal of the International Association for Mathematical Geology, 1, 79–96.

    Article  Google Scholar 

  • KRUMBEIN, W.C. and GRAYBILL, F.A. (1965). An introduction to statistical models in geology. New York, NY, McGraw-Hill.

    Google Scholar 

  • KRUMBEIN, W.C. and PETTIJOHN, F.J. (1938). Manual of sedimentary petrography.. New York, NY, NY, Appleton-Century.

    Google Scholar 

  • KRUMBEIN, W.C. and TUKEY, J.W. (1956). Multivariate analysis of mineralogic, lithologic, and chemical composition of rock bodies. Journal of Sedimentary Petrology, 26, 322–337.

    Google Scholar 

  • KRUSKAL, J.B. (1964). Multidimensional scaling by optimising goodness-of-fit to a non-metric hypothesis. Psychometrika, 29, 1–27.

    Article  Google Scholar 

  • KUNO, H. (1968). Differentiation of basalt magmas. In: HESS, H.H. and POLDERVAART, A. (eds.). Basalts. The Poldervaart treatise on rocks of basaltic composition. Vol 2. New York, Interscience, 623–688.

    Google Scholar 

  • LAAKSOHARJU, M., SKÅRMAN, C. and SKÅRMAN, E. (1999). Multivariate mixing and mass balance (M3) calculation, a new tool for decoding hydrogeochemical information. Applied Geochemistry, 14, 861–871.

    Article  Google Scholar 

  • LACOSS, R.T. (1971). Data adaptive spectral analysis methods. Geophysics, 36, 661–675.

    Article  Google Scholar 

  • LAM, L. (2000). Theory and application of majority vote – from Condorcet Jury Theorem to pattern recognition. In: Proceedings of the International Conference on ‘Mathematics for living’, Amman, Jordan, Hashemite Kingdom of Jordan, 177–182.

    Google Scholar 

  • LAVOISIER, A.-L. (1789). Traité élémentaire de chimie: présenté dans un ordre nouveau et d’après les découvertes modernes [Elements of chemistry: presented in a new order and based on modern discoveries]. Paris, Cuchet.

    Google Scholar 

  • Le MAITRE, R.W. (1979). A new generalised petrological mixing model. Contributions to Mineralogy and Petrology, 71, 133–137.

    Article  Google Scholar 

  • Le MAITRE, R.W. (1981). GENMIX – A generalised petrological mixing model program. Computers & Geosciences, 7, 229–247.

    Article  Google Scholar 

  • Le MAITRE, R.W. (1982). Numerical petrology. Statistical interpretation of geochemical data. Developments in petrology 8. Amsterdam, Elsevier Scientific Publishing.

    Google Scholar 

  • LEBESGUE, H. (1902). Intégrale, longueur, aire [Integral, length, area]. Doctoral dissertation, University of Paris. Milan, Bernandon de C. Rebeschini]. Annali di Mathematica Pura ed Applicata, 7, 231–359.

    Google Scholar 

  • LEBESGUE, H. (1904). Leçons sur l’intégration et la recherche des fonctions primitives [Lessons on integration and investigating primitive functions]. Paris, Gauthier-Villars.

    Google Scholar 

  • LEE, J.K.W. (1995). Multipath diffusion in geochronology. Contributions to Mineralogy and Petrology, 120, 60–82.

    Article  Google Scholar 

  • LEE, P.J. (1981). The Most Predictable Surface (MPS) mapping method in petroleum exploration. Bulletin of Canadian Petroleum Geology, 29, 224–240.

    Google Scholar 

  • LEES, J.M. and PARK, J. (1995). Multi-taper spectral analysis: A stand-alone C-subroutine. Computers & Geosciences, 21, 199–236.

    Article  Google Scholar 

  • LEGENDRE, A.-M. (1805). Appendice sur la méthode des moindres quarrés [Appendix on the method of minimum squares]. In: Nouvelles méthodes pour la détermination des orbites des comètes [New methods for the determination of the orbits of comets]. Paris, Courcier, 72–80.

    Google Scholar 

  • LEGGE, J.A. and RUPNIK, J.J. (1943). Least squares determination of the velocity function V = V 0 + kz for any set of time depth data. Geophysics, 8, 356–361.

    Article  Google Scholar 

  • LEVENBERG, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2, 164–168.

    Article  Google Scholar 

  • LEVERINGTON, D.W. (2010). Discrimination of sedimentary lithologies using Hyperion and Landsat Thematic Mapper data: a case study at Melville Island, Canadian High Arctic. International Journal of Remote Sensing, 31, 233–260.

    Article  Google Scholar 

  • LEVERINGTON, D.W. and MOON, W.M. (2003). An evaluation of consensus neural networks and evidential reasoning algorithms for image classification. In: Remote sensing, integrating our view of the planet: 2002 I.E. International Geoscience and Remote Sensing Symposium : 24th Canadian Symposium on Remote Sensing: Proceedings: Westin Harbour Castle, Toronto, Canada, June 24–28. v. 6, 3474–3476.

    Google Scholar 

  • LEVERINGTON, D.W. and MOON, W.M. (2012). Landsat-TM-based discrimination of lithological units associated with the Purtuniq Ophiolite, Quebec, Canada. Remote Sensing, 4, 1208–1231.

    Article  Google Scholar 

  • LI, W. (2007a). Markov chain random fields for estimation of categorical variables. Mathematical Geology, 39, 321–335.

    Article  Google Scholar 

  • LI, W. and ZHANG, C. (2007). A random-path Markov chain algorithm for simulating categorical soil variables from random point samples. Soil Science Society of America Journal, 71, 656–668.

    Article  Google Scholar 

  • LI, W., ZHANG, C., BURT, J.E., ZHU, A.-X. and FEYEN, J. (2004). Two-dimensional Markov chain simulation of soil type spatial distribution. Soil Science Society of America Journal, 68, 1479–1490.

    Article  Google Scholar 

  • LI, W., ZHANG, C., WILLIG, M.R., DEY, D.K., WANG, G. and YOU, L. (2015). Bayesian Markov chain random field cosimulation for improving land cover classification accuracy. Mathematical Geosciences, 47, 123–148.

    Article  Google Scholar 

  • LINDLEY, D.V. (1947). Regression lines and the linear functional relationship. Journal of the Royal Statistical Society, Supplement, 9 (1–2), 218–244.

    Article  Google Scholar 

  • LOUDON, T.V. (1964). Computer analysis of orientation data in structural geology. Technical Report No. 13 of ONR [Office of Naval Research] Task No. 389-135 Contract Nonr 1228(26), Evanston, IL, Geography Branch, Northwestern University [online: http://nora.nerc.ac.uk/19528/1/ONRrep13.pdf].

  • LOVEJOY, S. and SCHERTZER, D. (2007). Scaling and multifractal fields in the solid earth and topography. Nonlinear Processes in Geophysics, 14, 465–502.

    Article  Google Scholar 

  • LUSSER, R. (1950). A study of methods for achieving reliability of guided missiles. NAMTC Technical Report No. 75, Point Mugu, CA, United States Naval Air Test Center.

    Google Scholar 

  • MACLEOD, N. (2002a). Geometric morphometrics and geological form-classification systems. Earth Science Reviews, 59, 27–47.

    Article  Google Scholar 

  • MAGOTRA, N., HUSH, D., BIBBO, J. and CHAEL, E. (1990). Seismic signal discrimination using adaptive system parameters. In: JOHNSON, R.H., NOWROUZIAN, B. and TURNER, L.E., (eds.). Proceedings of the 33rd Midwest Symposium on Circuits and Systems, August 12–15, 1990, Calgary Convention Centre, Calgary, Alberta, Canada v.1, Piscataway, NJ, Institute of Electrical and Electronics Engineers, 84–87.

    Google Scholar 

  • MAHALANOBIS, P.C. (1927). Analysis of race-mixture in Bengal. Journal and Proceedings of the Asiatic Society, Bengal (n.s.), 23, 310–333.

    Google Scholar 

  • MANDELBROT, B.B. (1972). Possible refinements of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence. In: ROSENBLATT, M. and VAN ATTA, C. (eds.). Statistical models and turbulence. Lecture notes in physics 12. New York, NY, Springer-Verlag, 333–351.

    Chapter  Google Scholar 

  • MANDELBROT, B. (1975a). Les objects fractales: Forme, hasard, et dimension [Fractals: Form, chance and dimension]. Paris, Flammarion.

    Google Scholar 

  • MANDELBROT, B.B. (1975b). On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. Journal of Fluid Mechanics, 72, 401–416.

    Article  Google Scholar 

  • MANDELBROT, B. (1977). Fractals: Form chance and dimension. San Francisco, CA, W.H. Freeman.

    Google Scholar 

  • MANDELBROT, B.B. (1982). The fractal geometry of nature. San Francisco, CA, W.H. Freeman.

    Google Scholar 

  • MANN, C.J. (1987). Misuses of linear regression in the earth sciences. In: SIZE, W.B. (ed.). Use and abuse of statistical methods in the earth sciences. Oxford, Oxford University Press, 74–108.

    Google Scholar 

  • MANN, H.B. and WHITNEY, D.R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18, 50–60.

    Article  Google Scholar 

  • MARCOTTE, D. (1991). Cokriging with Matlab. Computers & Geosciences, 17, 1265–1280.

    Article  Google Scholar 

  • MARK, D.M. and CHURCH, M. (1977). On the misuse of regression in earth science. Journal of the International Association for Mathematical Geology, 9, 63–77.

    Article  Google Scholar 

  • MARKOV, A.A. (1906). Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot druga [Extension of the law of large numbers to events dependant one on the other]. Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete, ser. 2, 15, 135–156.

    Google Scholar 

  • MARPLE, S.L., Jr. (1989). A tutorial overview of modern spectral estimation. In: ICASSP89: Proceedings of the International Conference on Acoustics, Speech and Signal Processing, 23–26 May, 1989, Glasgow, Scotland, Piscataway, NY, Institute of Electrical and Electronic Engineers, 2152–2157.

    Google Scholar 

  • MARPLE, S.L., Jr. (1987). Digital spectral analysis with applications. Englewood Cliffs, NJ, Prentice-Hall.

    Google Scholar 

  • MARQUARDT, D.W. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11, 431–441.

    Article  Google Scholar 

  • MASUDA, A. (1957). Simple regularity in the variation of relative abundances of rare earth elements. Journal of Earth Sciences Nagoya University, 5, 125–134.

    Google Scholar 

  • MASUDA, A. (1962). Regularities in variation of relative abundances of lanthanide elements and an attempt to analyse separation-index patterns of some materials. Journal of Earth Sciences Nagoya University, 10, 173–187.

    Google Scholar 

  • MATEU-FIGUERAS, G. (2003). Models de distribució sobre el símplex [Distribution models on the simplex]. Doctoral dissertation, Catalunya, Universitat Politècnica de Catalunya.

    Google Scholar 

  • MATHERON, G. (1962–63). Traité de géostatistique appliquée [Treatise on applied geostatistics]. Mémoires du Bureau des Recherches Géologiques Minières, 14. Paris, Technip.

    Google Scholar 

  • MATHESON, I.B.C. (1990). A critical comparison of least absolute deviation fitting (robust) and least squares fitting: the importance of error distributions. Computers and Chemistry, 14, 49–57.

    Article  Google Scholar 

  • McCOWAN, D.W. (1968). Digital computer programs for the design and evaluation of multichannel filters. Seismic Data Laboratory Report 210, Alexandria, VA, Earth Sciences Division, Teledyne Industries.

    Google Scholar 

  • McGREGOR, G. (1981). Weathering characteristics of Late Pleistocene tills. New Zealand Journal of Geology and Geophysics, 24, 107–113.

    Article  Google Scholar 

  • McKELVEY, V.E. (1972). Mineral resource estimates and public policy. American Scientist, 60, 32–40.

    Google Scholar 

  • McKELVEY, V.E. (1973). Mineral resource estimates and public policy. In: BROBST, D.A. and PRATT, W.P. (eds.). United States mineral resources. United States Geological Survey Professional Paper 820. Washington, DC, United States Government Printing Office, 9–19.

    Google Scholar 

  • MELNYK, D.H., SMITH, D.G. and AMIRI-GARROUSSI, K. (1994). Filtering and frequency mapping as tools in subsurface cyclostratigraphy, with examples from the Wessex Basin, UK. In: DE BOER, P.L. and SMITH, D.G. (eds.). Orbital forcing and cyclic sequences. International Association of Sedimentologists Special Publication 19. Oxford, Blackwell, 35–46.

    Google Scholar 

  • MENGER, K. (1926). Allgemeine Räume und Cartesische Räume. Erste Mitteilung [General spaces and Cartesian spaces. I]. Proceedings of the Section of Sciences. Koninklijke Akademie van Wetenschappen te Amsterdam, 29, 476–482.

    Google Scholar 

  • MENGER, K. (2004). General spaces and Cartesian spaces. In: EDGAR, G.A. (ed.). Classics on fractals. Studies in nonlinearity. Boulder, CO, Westview Press, 103–117.

    Google Scholar 

  • MENGER, K. and NÖBELING, G. (eds.) (1932). Kurventheorie [Curve theory]. Berlin, Teubner.

    Google Scholar 

  • MERRIAM, D.F. and JEWETT, D.G. (1989). Methods of thematic map comparison. In: Current methods in Geomathematics. New York, NY, Plenum Press, 9–18.

    Google Scholar 

  • METROPOLIS, N. (1987). The beginning of the Monte Carlo method. Los Alamos Science, 15 (Special issue), 125–130.

    Google Scholar 

  • METROPOLIS, N., ROSENBLUTH, A.W., ROSENBLUTH, M.N., TELLER, A.H. and TELLER, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–1092.

    Article  Google Scholar 

  • METROPOLIS, N. and ULAM, S. (1949). The Monte Carlo method. Journal of the American Statistical Association, 44, 335–341.

    Article  Google Scholar 

  • MICHALSKI, R.S., CARBONELL, J. and MITCHELL, T. (eds.) (1983). Machine learning: An artificial intelligence approach. Palo Alto, CA, Tioga Publishing.

    Google Scholar 

  • MIDDLETON, G.V. (2000). Data analysis in the earth sciences using MATLAB. Upper Saddle River, NJ, Prentice Hall.

    Google Scholar 

  • MILANKOVITĆ, M. (1920). Théorie mathématique des phénomènes thermiques produits par la radiation solaire [Mathematical theory of heat phenomena produced by solar radiation]. Paris, Gauthier-Villars.

    Google Scholar 

  • MILANKOVITĆ, M. (1938). Astronomische Mittel zur Erforschung der erdgeschichtlichen Klimate [Astronomical methods for investigating Earth’s historical climate]. In: GUTENBERG, B. (ed.). Handbuch der Geophysik, v. 9. Berlin, Borntraeger, 593–698.

    Google Scholar 

  • MILANKOVITĆ, M. (1941). Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem [Canon of insolation and the Ice-Age problem]. Posebńa izdanja Srpska akademija nauka i umetnosti. [ Serbian Academy of Science and Arts special editions] v. 132; Section of Mathematical and Natural Sciences v. 33 , 1–633.

  • MILANKOVITĆ, M. (1969). Canon of insolation and the ice-age problem. Jerusalem, Israel Program for Scientific Translations, v. 1793 [Washington, DC, National Science Foundation], 1–484.

    Google Scholar 

  • MILLER, J. (ed.) (2015a). Earliest known uses of some of the words of mathematics [online: http://jeff560.tripod.com/mathword.html].

  • MILLER, R.L. and KAHN, J.S. (1962). Statistical analysis in the geological sciences. New York, John Wiley & Sons.

    Google Scholar 

  • MILLS, F.C. (1924). Statistical methods applied to economics and business. New York, NY, Henry Holt.

    Google Scholar 

  • MILNE, W.E. (1949). Numerical calculus: approximations, interpolation, finite differences, numerical integration, and curve fitting. Princeton, NJ, Princeton University Press.

    Book  Google Scholar 

  • MILNE, W.E. (1953). Numerical solution of differential equations. New York, NY, Dover Publications.

    Google Scholar 

  • MINKOWSKI, H. (1901). Ueber die begriffe, länge, oberfläche und vlumen [On the terms length, surface and volume.]. Jahresbericht der Deutschen Mathematikervereinigung, 9, 115–121.

    Google Scholar 

  • MOHR, O. (1882). Über die Darstellung des Spannungszustandes und des Deformationszustandes eines Korperelementes und über die Anwendung derselben in der Festigkeitslehre [Representation of stress and deformation state of parts of a body; its use in strength of materials]. Der Civilingenieur, 28, 113–156.

    Google Scholar 

  • MOLER, C.B. and HAIGH, T. (2004). Cleve Moler oral history interview by Thomas Haigh, 8 and 9 March, 2004, Santa Barbara, California. Society for Industrial and Applied Mathematics, Philadelphia, PA [online: http://history.siam.org/oralhistories/moler.htm].

  • MOOD, A.M. (1950). Introduction to the theory of statistics. New York, NY, McGraw-Hill.

    Google Scholar 

  • MOORE, E.H. (1935). Lectures on general analysis. Memoirs of the American Philosophical Society, 1, 197–209.

    Google Scholar 

  • MORLET, J., ARENS, G., FOURGEAU, E. and GLARD, D. (1982a). Wave propagation and sampling theory – Part I. Complex signal and scattering in multilayered media. Geophysics, 47, 203–221.

    Google Scholar 

  • MORLET, J., ARENS, G., FOURGEAU, E. and GLARD, D. (1982b). Wave propagation and sampling theory – Part II. Sampling theory and complex waves. Geophysics, 47, 222–236.

    Google Scholar 

  • MOSIMANN, J.E. (1965). Statistical methods for the pollen analyst: Multinomial and negative multinomial techniques. In: KUMMEL, B. and RAUP, D. (eds.). Handbook of palaeontological techniques. San Francisco, W.H. Freeman, 636–673.

    Google Scholar 

  • MULCHRONE, K.F., MCCARTHY, D.J. and MEERE, P.A. (2013b). Mathematica code for image analysis, semi-automatic parameter extraction and strain analysis. Computers & Geosciences, 61, 64–70.

    Article  Google Scholar 

  • MULCHRONE, K.F., PASTOR-GALÁN, D. and GUTIÉRREZ-ALONSO, G. (2013a). Mathematica code for least-squares cone fitting and equal-area stereonet representation. Computers & Geosciences, 54, 203–210.

    Article  Google Scholar 

  • NAIDU, P.S. (1995). Modern spectrum analysis of time series. Boca Raton, FL, CRC Press.

    Google Scholar 

  • NAIR, K.R. (1947). A note on the mean deviation from the mean. Biometrika, 34, 360–362.

    Article  Google Scholar 

  • NETTLETON, L.L. (1940). Geophysical prospecting for oil. New York, McGraw-Hill Book Company.

    Google Scholar 

  • NETTLETON, L.L. (1962). Gravity and magnetics for geologists and seismologists. AAPG Bulletin, 46, 1815–1838.

    Google Scholar 

  • NEWTON, G.D. (1985). Computer programs for common map projections. United States Geological Survey Bulletin 1532. Washington, DC, United States Government Printing Office.

    Google Scholar 

  • NEYMAN, J. (1934). On the two different aspects of the representative method: the method of stratified sampling and the method of purposive selection. Journal of the Royal Statistical Society, 109, 558–606.

    Article  Google Scholar 

  • NORBERG, T., ROSEN, L., BARAN, A. and BARAN, S. (2002). On modelling discrete geological structures as Markov random fields. Mathematical Geology, 34, 63–77.

    Article  Google Scholar 

  • NORTH, D.O. (1943). An analysis of the factors which determine the signal/noise discrimination in pulsed-carrier systems. Technical Report PTR-6-C. Princeton, NJ, RCA Laboratories Division [this originally classified report was reprinted in 1963: Proceedings of the IRE, 51 (7), 1016–1027].

    Google Scholar 

  • OLDHAM, C.H.G. and SUTHERLAND, D.B. (1955). Orthogonal polynomials: Their use in estimating the regional effect. Geophysics, 20, 295–306.

    Article  Google Scholar 

  • O’LEARY, M., LIPPERT, R.H. and SPITZ, O.T. (1966). FORTRAN IV and MAP program for computation and plotting of trend surfaces for degrees 1 through 6. Kansas Geological Survey Computer Contribution 3, Lawrence, KS, Kansas Geological Survey.

    Google Scholar 

  • OLIVER, D.S., CUNHA, L.B. and REYNOLDS, A.C. (1997). Markov chain Monte Carlo methods for conditioning a permeability field to pressure data. Mathematical Geology, 29, 61–91.

    Article  Google Scholar 

  • OOMMEN, T., MISRA, D., TWARAKAVI, N.K.C., PRAKASH, B. and BANDOPADHYAY, S. (2008). An objective analysis of support vector machine based classification for remote sensing. Mathematical Geosciences, 40, 409–424.

    Article  Google Scholar 

  • OTSUBO, M. and YAMAJI, A. (2006). Improved resolution of the multiple inverse method by eliminating erroneous solutions. Computers & Geosciences, 32, 1221–1227.

    Article  Google Scholar 

  • PAN, G. and HARRIS, D.P. (1991). A new multidimensional scaling technique based upon associations of triple objects: P ijk and its application to the analysis of geochemical data. Mathematical Geology, 23, 861–888.

    Article  Google Scholar 

  • PARK, J. and HERBERT, T.D. (1987). Hunting for periodicities in a geologic time series with an uncertain time scale. Journal of Geophysical Research, 92, 14027–14040.

    Article  Google Scholar 

  • PARZEN, E. (1968). Multiple time series modeling. In: KRISHNAIAH, P.R. (ed.). Multivariate Analysis II. New York, NY, Academic Press, 289–409.

    Google Scholar 

  • PEARSON, E.S. (1926). A further note on the distribution of range in samples taken from a normal distribution. Biometrika, 18, 173–194.

    Article  Google Scholar 

  • PEARSON, K. (1893). Asymmetrical frequency curves. Nature, 48, 615–616 [corrigendum, ibid., 49, 6].

    Google Scholar 

  • PEARSON, K. (1894). Contributions to the mathematical theory of evolution. I. On the dissection of asymmetrical frequency curves. Philosophical Transactions of the Royal Society, London, ser. A, 185, 71–110.

    Google Scholar 

  • PEARSON, K. (1895). Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material. Philosophical Transactions of the Royal Society, London, ser. A, 186, 343–414.

    Google Scholar 

  • PEARSON, K. (1897). Chances of death and other studies in evolution. London, Edward Arnold.

    Book  Google Scholar 

  • PEARSON, K. (1901). On lines and planes of closest fit to systems of points in space. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, ser. 6, 2, 559–572.

    Article  Google Scholar 

  • PEARSON, K. (1903a). On the probable errors of frequency constants. Biometrika, 2, 273–281.

    Article  Google Scholar 

  • PEARSON, K. (1903b). The law of ancestral heredity. Biometrika, 2, 211–228.

    Article  Google Scholar 

  • PEARSON, K. (1914). On certain errors with regard to multiple correlation occasionally made by those who have not adequately studied the subject. Biometrika, 10, 181–187.

    Google Scholar 

  • PENROSE, R. (1955). A generalized inverse for matrices. Proceedings of the Cambridge Philosophical Society, 51, 406–413.

    Google Scholar 

  • PERCIVAL, D.B. and WALDEN, A.T. (1993). Spectral analysis for physical applications. Multitaper and conventional univariate techniques. Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • PERRY, K., Jr. (1967a). Methods of petrologic calculation and the relationship between mineral and bulk chemical composition. Contributions to Geology, 6, 5–38.

    Google Scholar 

  • PERUGGIA, M. and SANTNER, T. (1996). Bayesian analysis of time evolution of earthquakes. Journal of the American Statistical Association, 91, 1209–1218.

    Article  Google Scholar 

  • PHADKE, S., BHARDWAJ, D. and DEY, S.K. (2000). An explicit predictor-corrector solver with application to seismic wave modelling. Computers & Geosciences, 26, 1053–1058.

    Article  Google Scholar 

  • PIERPONT, J. (1900). Galois’ theory of algebraic equations. Part II. Irrational resolvents. Annals of Mathematics, ser. 2, 2, 22–55.

    Google Scholar 

  • PIERUSCHKA, E. (1958). Mathematical foundation of reliability theory. Unnumbered report. Redstone Arsenal, Huntsville, AL; Fort Belvoir, VA , United States Department of Defense, Defense Technical Information Center.

    Google Scholar 

  • PIERUSCHKA, E. (1963). Principles of reliability. Englewood-Cliffs, NJ, Prentice-Hall.

    Google Scholar 

  • PISIAS, N.G. and MOORE, T.C. (1981). The evolution of Pleistocene climate: a time series approach. Earth and Planetary Science Letters, 52, 450–458.

    Article  Google Scholar 

  • PORWAL, A.K. (2006). Mineral potential mapping with mathematical geological models. ITC Doctoral dissertation 130, The Netherlands, Enschede, International Institute for Geo-information science and Earth Observation.

    Google Scholar 

  • POTTER, P.E. (1955). Petrology and origin of the Lafayette gravel. Part I. Mineralogy and petrology. Journal of Geology, 63, 1–38.

    Google Scholar 

  • PRATIBHA, K. (1999). Using Maple V to derive analytical formulae for gravity anomaly derivatives over anticlines and synclines with hyperbolic density contrast. Journal of Applied Geophysics, 42, 47–53.

    Article  Google Scholar 

  • PRATIBHA, K., SINGH, B., and DWIVEDI, A. (1999). On the use of symbolic computations in geosciences. Current Science, 76, 1145–1149.

    Google Scholar 

  • PRIESTLEY, M.B. (1965). Evolutionary spectra and non-stationary processes. Journal of the Royal Statistical Society, ser. B, 27, 204–237.

    Google Scholar 

  • PRIESTLEY, M.B. (1996). Wavelets and time-dependent spectral analysis. Journal of Time Series Analysis, 17, 85–103.

    Article  Google Scholar 

  • RALSTON, A. (1961). Some theoretical and computational matters relating to predictor-corrector methods of numerical integration. The Computer Journal, 4, 64–67.

    Article  Google Scholar 

  • RAMSAY, J.G. (1967). Folding and fracturing of rocks. New York, McGraw-Hill.

    Google Scholar 

  • RAMSAY, J.G. and HUBER, M.I. (1983). The techniques of modern structural geology. Vol. 1: Strain analysis. London, Academic Press.

    Google Scholar 

  • RAY, R.D. (1987). On an elementary application of graph theory to a magnetic survey adjustment system. Computers & Geosciences, 13, 287–292.

    Article  Google Scholar 

  • RAYLEIGH, Lord [J.W. Strutt] (1933). Beryllium and Helium. I. The Helium contained in beryls of varied geological age. Proceedings of the Royal Society, London, ser. A, 142, 370–381.

    Google Scholar 

  • REED, J.J. (1964). Machine-punched cards for cataloguing rocks and minerals. New Zealand Journal of Geology and Geophysics, 7, 573–584.

    Article  Google Scholar 

  • RENNER, R.M. (1993a). The resolution of a compositional dataset into mixtures of fixed source composition. Applied Statistics, C42, 615–631.

    Article  Google Scholar 

  • RENNER, R.M. (1993b). A constrained least-squares subroutine for adjusting negative estimated element concentrations to zero. Computers & Geosciences, 19, 1351–1360.

    Article  Google Scholar 

  • RENNER, R.M., GLASBY, G.P. and SZEFER, P. (1998). Endmember analysis of heavy-metal pollution in surficial sediments from the Gulf of Gdansk and the southern Baltic Sea off Poland. Applied Geochemistry, 13, 313–318.

    Article  Google Scholar 

  • REYMENT, R.A. (1969a). A multivariate palaeontological growth problem. Biometrics, 22, 1–8.

    Article  Google Scholar 

  • REYMENT, R.A. (1969b). A statistical analysis of some volcanologic data regarded as a series of point events. Pure and Applied Geophysics, 74, 57–77.

    Article  Google Scholar 

  • REYMENT, R.A. (1971a). Introduction to quantitative paleoecology. New York, NY, Elsevier.

    Google Scholar 

  • REYMENT, R.A. (1971b). Multivariate normality in morphometric analysis. Journal of the International Association for Mathematical Geology, 3, 357–368.

    Article  Google Scholar 

  • REYMENT, R.A. (1991). Multidimensional paleobiology. Oxford, Pergamon Press.

    Google Scholar 

  • REYMENT, R.A., BLACKITH, R.E and CAMPBELL, N.A. (1984). Multivariate morphometrics. 2nd edn., London, Academic Press.

    Google Scholar 

  • RICHARDSON, W.A. (1923). The frequency-distribution of igneous rocks. Part II. The laws of distribution in relation to petrogenic theories. Mineralogical Magazine, 20, 1–19.

    Article  Google Scholar 

  • RICHEY, M. (2010). The evolution of Markov chain Monte Carlo methods. The American Mathematical Monthly, 117, 383–413.

    Article  Google Scholar 

  • ROBINSON, E.A. (1966a). Collection of FORTRAN II programs for filtering and spectral analysis of single-channel time series. Geophysical Prospecting, 14, 2–52.

    Article  Google Scholar 

  • ROBINSON, E.A. (1966b). Multichannel z-transforms and minimum delay. Geophysics, 31, 482–500.

    Article  Google Scholar 

  • ROBINSON, E.A. (1967b). Statistical communication and detection with special reference to digital signal processing of radar and seismic signals. London, Griffin.

    Google Scholar 

  • ROBINSON, E.A. and TREITEL, S. (1964). Principals of digital filtering. Geophysics, 29, 395–404.

    Article  Google Scholar 

  • ROCK, N.M.S. (1986b). NPSTAT: A FORTRAN-77 program to perform nonparametric variable-by-variable comparisons on two or more independent groups of data. Computers & Geosciences, 12, 757–777.

    Article  Google Scholar 

  • ROCK, N.M.S. (1987). ANGLE: A FORTRAN-77 package to perform one-sample uniformity tests, two- and multisample tests on two-dimensional orientation data. Computers & Geosciences, 13, 185–208.

    Article  Google Scholar 

  • ROMESBURG, H.C. and MARSHALL, K. (1985). CHITEST: A Monte-Carlo computer program for contingency table tests. Computers & Geosciences, 11, 69–78.

    Article  Google Scholar 

  • ROMESBURG, H.C., MARSHALL, K. and MAUK, T.P. (1981). FITEST: A computer program for “exact chi-square” goodness-of-fit significance tests. Computers & Geosciences, 7, 47–58.

    Article  Google Scholar 

  • ROSIWAL, A. (1898). Ueber geometrische Gesteinanalysen. Ein einfacher Weg zur ziffremassigen Foxtstellung des Quantitätsverhäitnissos der Mineralbestandtheile gemengter Geneine [On geometric rock analysis. A quantitative surface measure of the constituents of a stony aggregate]. Verhandlungen der Kaiserlich Königlichen geologischen Reichsanstalt, Wien, 5, 143–175.

    Google Scholar 

  • RUBIN, D.R. (1988). Using the SIR [Sampling-Importance-Resampling] algorithm to simulate posterior distributions. In: BERNARDO, J.M., DEGROOT, M.H., LINDLEY, D.V. AND SMITH, A.F.M. (eds.). Bayesian Statistics 3, Proceedings of the third Valencia International Meeting, June 1–5, 1987. Oxford, Oxford University Press, 395–402.

    Google Scholar 

  • SAMUEL, A.L. (1959). Some studies in machine learning using the game of Checkers. IBM Journal of Research and Development, 3, 210–229.

    Article  Google Scholar 

  • SANDER, B. (1948). Einführung in die Gefügekunde der geologischen Körper. I. Allgemeine Gefügekunde und Arbeiten in Bereich Handstuck bis Profil [Introduction to the structure of geological bodies. I. General study of fabrics, work on a scale from profile to hand-specimen]. Vienna, Springer-Verlag.

    Google Scholar 

  • SANDER, B. (1970). An introduction to the fabrics of geological bodies. Oxford [English translation by F.C. PHILLIPS and G. WINDSOR], Pergamon Press.

    Google Scholar 

  • SARMA, D.D. (1990). Stochastic modelling of gold mineralization in the Champion lode system of Kolar gold fields (India). Mathematical Geology, 22, 261–279.

    Article  Google Scholar 

  • SAVITT, C.H., BRUSTAD, J.T. and SIDER, J. (1958). The moveout filter. Geophysics, 23, 1–25.

    Article  Google Scholar 

  • SCHERBATSKOY, S.A. and NEUFELD, J. (1937). Fundamental relations in seismometry. Geophysics, 2, 188–212.

    Article  Google Scholar 

  • SCHWARZACHER, W. (1969). The use of Markov chains in the study of sedimentary cycles. Journal of the International Association for Mathematical Geology, 1, 17–39.

    Article  Google Scholar 

  • SERRANO, S.E. (1997). Hydrology for engineers, geologists, and environmental professionals. An integrated treatment of surface, subsurface and contaminant hydrology. Lexington, KY, HydroScience Inc.

    Google Scholar 

  • SHARP, W.E. and BAYS, C. (1992). A review of portable random number generators. Computers & Geosciences, 18, 79–87.

    Article  Google Scholar 

  • SHEN, K., CROSSLEY, J.N. and LUN, A. W.-C. (1999). The nine chapters on the mathematical art: Companion and commentary. Oxford, Oxford University Press.

    Google Scholar 

  • SHERIFF, R.E.(1984). Encyclopedic dictionary of exploration geophysics. 2nd edn., Tulsa, Society of Exploration Geophysicists.

    Google Scholar 

  • SHERIFF, R.E. and GELDART, L.P. (1982). Exploration seismology, v. 1: History, theory and data acquisition. Cambridge, Cambridge University Press.

    Google Scholar 

  • SHEYNIN, O. (1994). Chebyshev’s lectures on the theory of probability. Archive for History of Exact Sciences, 46, 321–340.

    Article  Google Scholar 

  • SIMPSON, S.M. (1954). Least squares polynomial fitting to gravitational data and density plotting by digital computer. Geophysics, 19, 255–269.

    Article  Google Scholar 

  • SINCLAIR, A.J. (1974). Selection of threshold values in geochemical data using probability graphs. Journal of Geochemical Exploration, 3, 129–149.

    Article  Google Scholar 

  • SMITH, A.F.M. and GELFAND, A.E. (1992). Bayesian statistics without tears: a sampling-resampling perspective. American Statistician, 46, 84–88.

    Google Scholar 

  • SMITH, D.G. (1989a). Stratigraphic correlation of presumed Milankovitch cycles in the Blue Lias (Hettangian to earliest Sinemurian), England. Terra Nova, 1, 457–460.

    Article  Google Scholar 

  • SMITH, T.F. and WATERMAN, M.S. (1980). New stratigraphic correlation techniques. Journal of Geology, 88, 451–457.

    Article  Google Scholar 

  • SNYDER, J.P. (1987). Map projections – A working manual. United States Geological Survey Professional Paper 1395, Washington, DC, United States Government Printing Office.

    Google Scholar 

  • SNYDER, J.P. and STEWARD, H. (1988). Bibliography of map projections. United States Geological Survey Bulletin 1856, Washington, DC, United States Government Printing Office.

    Google Scholar 

  • SOILLE, P. (2002). On morphological operators based on rank filters. Pattern Recognition, 35, 527–535.

    Article  Google Scholar 

  • STANLEY, C.R. (2003b). THPLOT.M: A MATLAB function to implement generalized Thompson–Howarth error analysis using replicate data. Computers & Geosciences, 29, 225–237.

    Article  Google Scholar 

  • STANLEY, C.R. (2006a). Numerical transformation of geochemical data: 1. Maximizing geochemical contrast to facilitate information extraction and improve data presentation. Geochemistry: Exploration, Environment, Analysis, 6, 69–78.

    Google Scholar 

  • STEWART, B. (1889). Meteorology: Terrestrial Magnetism. In: Encyclopaedia Britannica, v. XVI. 9th edn., Edinburgh, A. & C. Black, 159–184.

    Google Scholar 

  • STOCCO, S., GODIO, A. and SAMBUELLI, L. (2009). Modelling and compact inversion of magnetic data: A Matlab code. Computers & Geosciences, 35, 2111–2118.

    Article  Google Scholar 

  • SUTTON, M., RAHMAN, I. and GARWOOD, R. (2013). Techniques for virtual palaeontology. Chichester, John Wiley & Sons.

    Book  Google Scholar 

  • SWAIN, J.J. (1990). Nonlinear regression. In: WADSWORTH, H.M. (ed.). Handbook of statistical methods for engineers and scientists. 2nd edn., New York, NY, McGraw-Hill, 18.1–18.31.

    Google Scholar 

  • SYLVESTER, J.J. (1850). Additions to the article in the September number of this journal “On a new class of theorems,” and on Pascal's theorem. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, ser. 3, 37, 363–370.

    Google Scholar 

  • TANNER, D.C. (1999). The scale-invariant nature of migmatite from the Oberpfalz, NE Bavaria and its significance for melt transport. Tectonophysics, 302, 297–306.

    Article  Google Scholar 

  • TARLOWSKI, Z. (1982). Direct and inverse problems in local electromagnetic induction. Surveys in Geophysics, 4, 395–404.

    Article  Google Scholar 

  • TAYLOR, H.L. (1981). The L1 norm in seismic data processing. Developments in Geophysical Exploration, 2, 53–76.

    Article  Google Scholar 

  • THANASSOULAS, C., TSELENTIS, G.-A. and DIMITRIADIS, K. (1987). Gravity inversion of a fault by Marquardt’s method. Computers & Geosciences, 13, 399–404.

    Article  Google Scholar 

  • THOMPSON, D. W. (1915). Morphology and mathematics. Transactions of the Royal Society of Edinburgh, 50, 857–895.

    Article  Google Scholar 

  • THOMPSON, D.W. (1917). On growth and form. Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • THOMPSON, J.B. (1957). The graphical analysis of mineral assemblages in pelitic schists. American Mineralogist, 42, 842–858.

    Google Scholar 

  • THOMSON, D.J. (1982). Spectrum estimation and harmonic analysis. IEEE Proceedings, 70, 1055–1096.

    Google Scholar 

  • TIAN, D., SOROOSHIAN, S. and MYERS, D.E. (1993). Correspondence analysis with Matlab. Computers & Geosciences, 19, 1007–1022.

    Article  Google Scholar 

  • TITTERINGTON, D.M., SMITH, A.F.M. and MAKOV, U.E. (1986). Statistical analysis of finite mixture distributions. Chichester, John Wiley & Sons.

    Google Scholar 

  • TOCHER, K.D. (1954). The application of automatic computers to sampling experiments. Journal of the Royal Statistical Society, London, 16, 39–75.

    Google Scholar 

  • TOMKEIEFF, S.G. (1947). Analytical geology. Nature, 160, 846–847.

    Article  Google Scholar 

  • TORELL, W. and AVELAR, V. (2010). Mean time between failure: Explanation and standards. APC White Paper 78. Schneider Electric, Data Center Science Center [online: http://it-resource.schneider-electric.com/i/482830-wp-78-mean-time-between-failure-explanation-and-standards].

  • TRAUTH, M.H. (2015). MATLAB recipes for earth sciences. 4th edn., Heidelberg, Springer-Verlag.

    Book  Google Scholar 

  • TREITEL, S. (1970). Principles of digital multichannel filtering. Geophysics, 35, 785–811.

    Article  Google Scholar 

  • TREITEL, S. and ROBINSON, E.A. (1969). Optimum digital filters for signal to noise ratio enhancement. Geophysical Prospecting, 17, 248–239.

    Article  Google Scholar 

  • TROUTMAN, B.M. and WILLIAMS, G.P. (1987). Fitting straight lines in the earth sciences. In: SIZE, W.B. (ed.). Use and abuse of statistical methods in the earth sciences. Oxford, Oxford University Press, 107–128.

    Google Scholar 

  • TSO, B. and MATHER, P.M. (2001). Classification methods for remotely sensed data. London, Taylor and Francis.

    Book  Google Scholar 

  • TUKEY, J.W. (1959b). An introduction to the measurement of spectra. In: GRENANDER, U. (ed.). Probability and statistics. The Harald Cramér volume. New York, NY, John Wiley & Sons, 300–330.

    Google Scholar 

  • TURCOTTE, D.L. (1992). Fractals and chaos in geology and geophysics. Cambridge, Cambridge University Press.

    Google Scholar 

  • TURCOTTE, D.L. (1997). Fractals and chaos in geology and geophysics. 2nd edn., Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • TURCOTTE, D.L. (2002). Fractals in petrology. Lithos, 65, 261–271.

    Article  Google Scholar 

  • TURIN, G.L. (1960). An introduction to matched filters. IRE Transactions on Information Theory, IT-6, 311–329.

    Google Scholar 

  • ULRYCH, T.J. (1972). Maximum entropy power spectrum of truncated sinusoids. Journal of Geophysical Research, 77, 1396–1400.

    Article  Google Scholar 

  • ULRYCH, T.J. and BISHOP, T.N. (1975). Maximum entropy spectral analysis and autoregressive decomposition. Reviews in Geophysics and Space Physics, 13, 183–200.

    Article  Google Scholar 

  • ULRYCH, T.J., SMYLIE, D.E., JENSEN, O.G. and CLARKE, G.K.C. (1973). Predictive filtering and smoothing of short records by using maximum entropy. Journal of Geophysical Research, 78, 4959–4964.

    Article  Google Scholar 

  • van ORSTRAND, C.E. (1925). Note on the representation of the distribution of grains in sands. In: Researches in sedimentation in 1924. Report of the Committee on Sedimentation for 1924. Washington, DC, National Research Council, 63–67.

    Google Scholar 

  • VERE-JONES, D. (1966). A Markov model for aftershock occurence. Pure and Applied Geophysics, 64, 31–42.

    Article  Google Scholar 

  • VERLY, G. (1983). The multigaussian approach and its applications to the estimation of local reserves. Journal of the International Association for Mathematical Geology, 15, 259–286.

    Article  Google Scholar 

  • VISTELIUS, A.B. (1944). Zametki po analiticheskoyj geologii [Notes on analytical geology]. Doklady Akedemiya Nauk SSSR, 44 (4), 27–31.

    Google Scholar 

  • VISTELIUS, A.B. (1961). Sedimentation time trend functions and their application for correlation of sedimentary deposits. Journal of Geology, 69, 703–728.

    Article  Google Scholar 

  • VISTELIUS, A.B. (1962). Problemy matematičeskoj geologii. Vklad v istoriju voprosa [Problems of mathematical geology. A contribution to the history of the problem]. Geologiya i Geofizika, 12 (7), 3–9 [English translation in: VISTELIUS (1967), 9–15].

    Google Scholar 

  • VISTELIUS, A.B. (1966). Ob obrazovanii granodioritov g. Belayna Kamchatke [Formation of the Mt. Belaya granodiorite, Kamchatka]. Doklady Akademiya Nauk SSSR, 167, 1115–1118.

    Google Scholar 

  • VISTELIUS, A.B. (1980). Osnovy matematičeskoj geologii [Essential mathematical geology]. Leningrad, AN SSSR Izdatel’stvo nauk.

    Google Scholar 

  • VISTELIUS, A.B. (1992). Principles of mathematical geology [translated by S.N. BANERGEE]. Dordrecht, Kluwer.

    Google Scholar 

  • VISTELIUS, A.B. and YANOVSKAYA, T.B. (1963). Programmirovaniye geologicheskikh i geokhimicheskikh problem dlya vsekh universal’nykh elektronnykh vychislitel’nykh mashin [The programming of geological and geochemical problems for all-purpose electronic computers]. Geologiya Rudnykh Mestorozhdenii, 3, 34–48 [English translation in: VISTELIUS (1967), 29–40].

    Google Scholar 

  • VISTELIUS, A.B., AGTERBERG, F.P., DIVI, S.R. and HOGARTH, D.D. (1983). A stochastic model for the crystallization and textural analysis of a fine grained granitic stock near Meech Lake, Gatineau Park, Quebec. Geological Survey of Canada Paper 81-21, Ottawa, Ontario, Geological Survey of Canada.

    Google Scholar 

  • WASKE, B. and BRAUN, M. (2009). Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 450–457.

    Article  Google Scholar 

  • WATERMAN, M.S. and RAYMOND, R. Jr. (1987). The match game: New stratigraphic correlation algorithms. Mathematical Geology, 19, 109–127.

    Google Scholar 

  • WEBSTER, R. (1997). Regression and functional relations. European Journal of Soil Science, 48, 557–566.

    Article  Google Scholar 

  • WEEDON, G.P. (2003). Time series analysis and cyclostratigraphy. Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • WEI, L. and MARPLE, S.L., Jr. (2008). Fast algorithms for least-squares-based minimum variance spectral estimation. Signal Processing, 88, 2181–2192.

    Article  Google Scholar 

  • WENTWORTH, C.K. (1929). Method of computing mechanical composition types in sediments. Geological Society of America Bulletin, 40, 771–790.

    Article  Google Scholar 

  • WELTJE, G.J. (2002). Quantitative analysis of detrital modes: statistically rigorous confidence regions in ternary diagrams and their use in sedimentary petrology. Earth Science Reviews, 57, 211–253.

    Article  Google Scholar 

  • WEYL, P.K. (1960). Porosity through dolomitization: Conservation-of-mass requirements. Journal of Sedimentary Petrology, 30, 85–90.

    Google Scholar 

  • WIGGINS, R.A. (1978). Minimum entropy deconvolution. Geoexploration, 16, 21–35.

    Article  Google Scholar 

  • WILK, M.B. and KEMPTHORNE, O. (1955). Fixed, mixed and random models. Journal of the American Statistical Association, 50, 1144–1167.

    Google Scholar 

  • WILKS, S.S. (1932). Certain generalisations in the analysis of variance. Biometrika, 34, 471–494.

    Article  Google Scholar 

  • WILLIAMS, B.G., WARD, J.K. and BELBIN, L. (1987). Numerical classification of saline groundwater chemistry in the Murrumbidgee irrigation area. Australian Journal of Soil Research, 25, 337–345.

    Article  Google Scholar 

  • WOLD, H.O.A. (1965). A graphic introduction to stochastic processes. In: WOLD, H.O.A. (ed.). Bibliography on time series and stochatic processes. Edinburgh, Oliver & Boyd, 7–76.

    Google Scholar 

  • WOLERY, T.J. and WALTERS, L. J. (1975). Calculation of equilibrium distributions of chemical species in aqueous solutions by means of monotone sequences. Journal of the International Association for Mathematical Geology, 7, 99–114.

    Article  Google Scholar 

  • WOLFRAM, S. (1988). Mathematica, a system for doing mathematics by computer. Manual for version 1.0 of the computer program. Redwood City, CA, Addison-Wesley.

    Google Scholar 

  • WOODS, J.W. (1972). Two-dimensional discrete Markovian fields. IEEE Transactions on Information Theory, 18, 232–240.

    Article  Google Scholar 

  • WOODWARD, J. (1695). An essay toward a natural history of the Earth: and terrestrial bodies, especially minerals: as also of the sea, rivers and springs. With an account of the Universal Deluge: and of the effects that it had upon the Earth. London, R. Wilkin.

    Google Scholar 

  • WRIGHT, T.L. and DOHERTY, P.C. (1970). A linear programming and least squares computer method for solving petrologic mixing problems. Geological Society of America Bulletin, 81, 1995–2008.

    Article  Google Scholar 

  • WÜSTEFELD, A., BOKELMANN, G., ZAROLI, C. and Barruol, G. (2008). SplitLab: A shear-wave splitting environment in Matlab. Computers & Geosciences, 34, 515–528.

    Article  Google Scholar 

  • YAMAJI, A.. (2000). The multiple inverse method: a new technique to separate stresses from heterogeneous fault-slip data. Journal of Structural Geology, 22, 441–452.

    Article  Google Scholar 

  • YANG, C.-S. and KOUWE, W.F.P. (1995). Wireline log-cyclicity analysis as a tool for dating and correlating barren strata: an example from the Upper Rotliegend of The Netherlands. In: DUNAY, R.E. and HAILWOOD, E.A. (eds.). Non-biostratigraphical methods of dating and correlation. Special Publication 89. London, The Geological Society, 237–259.

    Google Scholar 

  • YOUNG, J.R. (1836). Elements of differential calculus: comprehending the general theory of curve surfaces and of curves of double curvature. 2nd edn., London, John Souter.

    Google Scholar 

  • YOUNG, W.H. (1908). Note on monotone sequences of continuous functions. Proceedings of the Cambridge Philosophical Society, 14, 520–529.

    Google Scholar 

  • YU, L., PORWAL, A., HOLDEN, E.J. and DENTITH, M.C. (2012). Towards automatic lithological classification from remote sensing data using support vector machines. Computers & Geosciences, 45, 229–239.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Howarth, R.J. (2017). M. In: Dictionary of Mathematical Geosciences . Springer, Cham. https://doi.org/10.1007/978-3-319-57315-1_13

Download citation

Publish with us

Policies and ethics