Skip to main content

Antipyretic and Analgesic Activities of Some Economically Important Woody Plants

  • Chapter
  • First Online:
Medicinally Important Trees

Abstract

This chapter describes antipyretic and analgesic activities of trees like Brachychiton populneus, Ceiba speciosa, Eucalyptus citriodora, Murraya exotica, Pinus roxbrghii, Pterospermum acerifolium, Putranjiva roxburghii, Salix babylonica, Salix tetrasperma, Tectona grandis, and Zizyphus mauritiana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abalaka ME, Daniyan SY, Mann A (2010) Evaluation of the antimicrobial activities of two Ziziphus species (Ziziphus mauritiana L. and Ziziphus spinachristi L.) on some microbial pathogens. Afr J Pharm Pharmacol 4:135–139

    Google Scholar 

  • Abou-Zeid AH (2000) Volatiles, phenolics and biological activities of Salix babylonica L leaves and stem bark. Bull Nat Res Cent (Cairo) 31(4):289–312

    Google Scholar 

  • Adam RP (2001) Identification of essential oil components by gas chromatography/quadrupole mass spectrometry. Allured, Carol Stream

    Google Scholar 

  • Aguinaldo AM, Ocampo OPM, Bruce FB et al (1993) Tectograndone, an anthraquinone–naphthoquinone pigment from the leaves ofTectona grandis. Phytochemistry 33:933–935

    Article  CAS  Google Scholar 

  • Amit V, Jain SK, Shashi A (2010) Hypoglycemic activity of Putranjiva roxburghii wall. In alloxan induced diabetic rats. Int J Pharm Sci Res 1(12):160–164

    Google Scholar 

  • Asif M (2011) In vivo analgesic and antiinflammatory effect of Tectona grandisLinn. Stem bark extract. Malays J Pharm Sci 1:1–11

    Google Scholar 

  • Awe SO, Olajide OA, Oladiran OO et al (1998) Antiplasmodium and antipyretic screening of Mangifera indica extract. Phytother Res 12(6):437–438

    Article  Google Scholar 

  • Aziz SSSA, Sukari MA, Rahmani M et al (2010) Coumarins from Murraya paniculata(Rutaceae). Malays J Anal Sci 14:1–5

    Google Scholar 

  • Balachandran P, Govindrajan R (2005) Cancer – an ayurvedic perspective. Pharmacol Res 51:19–30

    Article  PubMed  Google Scholar 

  • Balakrishman A, Balasubramaniyam PD, Natesan SK (2012) Antipyretic activity of Zizyphus jujubalam. Leaves. J Adv Sci Res 3(3):40–42

    Google Scholar 

  • Chhetri DR (2004) Medicinal plants used as antipyretic agents by traditional healers of Darjeeling Himalayas. Indian J Tradit Knowl 3(3):271–275

    Google Scholar 

  • Chidambaram K, Jaswanth A, Karpagam K (2011) Antipyretic activity of Crataeva magna bark on tab-vaccine induced pyrexia. Int J Pharm Sci Res 2(4):856–859

    Google Scholar 

  • Clemente MA, Monteiro CMD, Scoralik MG et al (2010) Acricidal activity of the essential oils from Eucalyptus citriodora and Cymbopogan nardus on larvae of Amblyomma cajennense (Acari: Ixodidae) and Anocentor nitens (Acari: Ixodidae). Parasitol Res 107:987–992

    Article  PubMed  Google Scholar 

  • Dagne E, Bisrat D, Alemayehu M (2000) Essential oils of twelve eucalyptusspecies from Ethiopia. J Essent Oil Res 12(4):467–470

    Article  CAS  Google Scholar 

  • Datta R, Berra B, Das Gupta A et al (2011) Antiinflammatory, analgesic and antipyretic activity of the leaves of Pterospermum acerifolium. J PharmSci Tech 1(1):35–40

    Google Scholar 

  • Diallo A, Gbeassor M, Vovor A et al (2008) Effect of Tectona grandis leaves on phenylhydrazine-induced anemia in rats. Fitotherapy 79(5):332–336

    Article  Google Scholar 

  • Dixit P, Khan MP, Swankar G et al (2011) Osteogenic constituents from Pterospermum acerifolium wild flowers. Bioorg Med Chem Lett 21:4617–4621

    Article  CAS  PubMed  Google Scholar 

  • Duke JA (2007) Duke’s handbook of medicinal plants of bible. CRC Press, Boca Raton

    Book  Google Scholar 

  • EL-Shaer NS (2002) Lignan and phenolic acids from oleoresin of Pinus roxburghii (chir pine). Alex J Pharm Sci 16(1):31–35

    CAS  Google Scholar 

  • El-Shazly A, El-Sayed A, Fikrey E (2012) Bioactive secondary metabolites from Salix tetrasperma. Z Naturforsch C 67:353–359

    Article  CAS  PubMed  Google Scholar 

  • Fazal-ur-Rehman MFK, Khan I, Shareef H et al (2014) Analgesic activity of carbazole alkaloid from Murraya paniculata Linn. (Rutaceae). Am-Eurasian J Agric Environ Sci 14(3):240–245

    CAS  Google Scholar 

  • Garg HS, Mitra CR (1968) Putranjiva roxburghii wall.-II triterpenes of the trunk bark. Phytochemistry 7:2053–2055

    Article  CAS  Google Scholar 

  • Gbenou D, Ahounou JF, Akakpo HB et al (2013) Phytochemical composition of Cymbopogon citratusand Eucalyptus citriodora essential oils and their antiinflammatory and analgesic properties on wistar rats. Mol Biol Rep 40(2):1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Ghaisas M, Navghare K, Takawale A et al (2009) Tectona grandisOn dexamethasone –induced insulin resistance in mice. J Ethnopharmacol 122(Suppl 2):304–307

    Article  PubMed  Google Scholar 

  • Gill NS, Kaur N, Arora R (2014) An overview on Murraya paniculata Linn. Int J Inst Pharm Life Sci 4:1–11

    Google Scholar 

  • Goyal M, Sasmal D, Nagori BP (2012) Review on Ethnomedicinal uses, pharmacological activity and phytochemical constituents of Ziziphus mauritiana(Z. jujubalam., non mill). Spat DD Peer RevJ Complementary Med Drug Discov 2(2):107–116

    Article  Google Scholar 

  • Gupta PK, Singh PA (2004) A Naphthaquinone derivative from Tectona grandis Linn. JAsian Nat Prod Res Suppl 3:237–240

    Article  Google Scholar 

  • Harborne JB (1998) Phytochemical methods- a guide to modern techniques of plant analysis, 3rd edn. Chapman and Hall, London. 56, 81-3, 92-6,115-20

    Google Scholar 

  • Husain SS, Ali M (2013) Volatile oil constituents of the leaves of Eucalyptus citriodora and influence on clinically isolated pathogenic microorganisms. J Sci Innov Res 2(5):852–858

    Google Scholar 

  • Jarald EE, Joshi SB, Jain DC (2009) Antidiabetic activity of extracts and fraction of Zizyphus mauritiana. Pharm Biol 47:328–334

    Article  Google Scholar 

  • Javed S, Shoaib A, Mahmood Z et al (2012) Analysis of phytochemical constituents of Eucalyptus citriodora L. responsible for antifungal activity against post-harvest fungi. Nat Prod Res 26(18):1732–1736

    Article  CAS  PubMed  Google Scholar 

  • Jean B (2008) Pharmacognosy, Phytochemistry, medicinal plants, 2nd edn. Intercept. Ltd, New York

    Google Scholar 

  • Jossang A, Zahir A, Diakite D et al (1996) A cyclopeptide alkaloid from Zizyphus mauritiana. Phytochemistry 42:565–567

    Article  CAS  Google Scholar 

  • Kaushik D, Kumar A, Kaushik P et al (2012) Analgesic and antiinflammatory activity of Pinus Roxburghii. Sarg Adv Pharmacol Sci. doi:10.1155/2012/245431

    PubMed  Google Scholar 

  • Kayser O, Arndt SK (2000) Antimicrobial activity of some Ziziphus species used in traditional medicine. Pharm Pharmacol Lett 10:38–40

    CAS  Google Scholar 

  • Khan A, Saeed MA, Chaudhary MA et al (2015) Antimicrobial, antiinflammatory and antipyretic activity of Chorisia speciosa leaves (Bombacaceae). Int J Biol Pharm Allied Sci 4(12):6826–6838

    Google Scholar 

  • Khandelwal KR, Kokate CK, Gokhale SB (1996) Practical pharmacognosy techniques and experiments. Nirali Prakashan, Pune, pp 100–148

    Google Scholar 

  • Khare CP (2007) Indian medicinal plants: an illustrated dictionary. Springer, New York, p 227

    Google Scholar 

  • Kharpate S, Vadnerkar G, Jain D et al (2007) Evaluation of hepatoprotective activity of ethanol extracts of Pterospermum acerifloium Ster leaves. Indian J Pharm Sci 69:850–852

    Article  Google Scholar 

  • Khatoon F, Khabiruddin M, Ansari WH (1988) Phenolic glycosides from Salix babylonica. Phytochemistry 27:3010–3011

    Article  CAS  Google Scholar 

  • Khobrade DS, Rajahamsa LAK, Rao KTVK et al (2013) Multi-model confirmatory evaluation of antiinflammatory, analgesic and antioxidant activities of Putranjiva roxburghii wall. Int J Biomed Adv Res 4(12):921

    Article  Google Scholar 

  • Khond M, Bhosale JD, Arif T et al (2009) Screening of some selected medicinal plants extracts for in vitro antimicrobial activity. Middle-East J Sci Res 4:271–278

    Google Scholar 

  • Kishore RN, Mangila T, Anjaneyulu N et al (2014) Investigation of antiinflammatory and in vitro antioxidant activities of hydroalcoholic extract of bark of Salix tetrasperma Roxb. Int J Pharm Drug Anal 2(5):506–509

    Google Scholar 

  • Langenheim LH (2003) Plant resins: chemistry, evaluation, ecology and ethnobotany. Timber press, Auckland, pp 453–454

    Google Scholar 

  • Luqman S, Dwivedi GR, Darokar MP et al (2008) Antimicrobial activity of Eucalyptus citriodora essential oil. Int J Essent Oil Ther 2(01):69–75

    Google Scholar 

  • Mahmood A, Qaiser J, Muhammad W et al (2013) Time and dose dependent antipyretic investigations of ethanolic leaves and fruits extracts of Prosopis cinerariaL. (Druce). J Altern Complement Med 2(2):141–144

    Google Scholar 

  • Manna AS, Jena J (2009) Anti inflammatory and analgesic activity of bark extract of Pterospermum acerifolium. Int J Curr Pharm Res 1(1):32–37

    CAS  Google Scholar 

  • Manna AK, Jena J, Behera AK (2009) Effects of Pterospermum acerifolium bark extract on oxidative damages in the gastric tissue during alcohol induced ulceration. Int JPharm Pharm Sci 1:51–59

    Google Scholar 

  • Matsuda H, Murakami T, Ikebata A (1999) Bioactive saponins and glycosides. XIV. Structure elucidation and immunological adjuvant activity of novel protojujubogenin type triterpene bisdesmosides, protojujubosides a, B, and B1, from the seeds of Zizyphus jujuba var. spinosa (Zizyphi spinosi semen). Chem Pharm Bull 47(12):1744–1748

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Shome U (2009) Pharmacognostic studies on the flower of Pterospermum acerifolium. J Sci Res 4:271–278

    Google Scholar 

  • Mhaskar KS, Blatter E, Caius JF et al (2000) Kirtikar and Basu’s illustrated Indian medicinal plants. Satguru Publication, Delhi, pp 1455–1457

    Google Scholar 

  • Mishra T, Khullar M, Bhatia A (2011) Anticancer potential of aqueous ethanol seed extract of Ziziphus mauritiana against cancer cell lines and Ehrlich ascites carcinoma. EvidBased Complement Alternat Med 2011:765029

    Google Scholar 

  • Mondal S, Ramana H, Suresh P et al (2010) Studies on diuretic and laxative activity of bark of Salix tetrasperma Roxburgh. Int J Pharm 1(1):145–149

    Google Scholar 

  • Muanza DN, Kim BW, Euler KL et al (1994) Antibacterial and antifungal activities of nine medicinal plants from Zaire. Pharm Biol 32(4):337–345

    Article  Google Scholar 

  • Nagateja PA, Somashekara SC, Jagannath N et al (2013) Antipyretic activity of Piper nigrum in wistar albino rats. Int J Pharm Biomed Res 4(3):167–169

    Google Scholar 

  • Najafi S (2013) Phytochemical screening and antibacterial activity of leaf extract ofZiziphus mauritianalam. Int Res J Appl Basic Sci 4(11):3274–3276

    Google Scholar 

  • Nandy S, Chatterjee P, Chakraborty B et al (2012) Pterospermum acerifolium Linn. A comprehensive review with significant pharmacological activities. Int J Pharm Life Sci 3(2):1453–1458

    Google Scholar 

  • Narkhede MB, Aimire PV, Wagh AE (2012) Evaluation of antinociceptive and antiinflammatory activities of ethanol extract of Murraya paniculata leaves in experimental rodents. Int J Pharm Pharm Sci 4:247–251

    Google Scholar 

  • Nayeem N, Karvekar MD (2010) Analgesic and antiinflammatory activity of the methanolic extract of frontal leaves of Tectona grandis. Int J Pharm 8:1531–2976

    Google Scholar 

  • Negi N, Ochi A, Kurosawa M et al (2005) Two new dimeric coumarins isolated from Murraya exotica. Chem Pharm Bull 53:1180–1182

    Article  CAS  PubMed  Google Scholar 

  • Ng MK, Abdulhadi-Noaman Y, Cheah YK et al (2012) Bioactivity studies and chemical constituents of Murraya paniculata (Linn) Jack. Int Food Res J 19:1307–1312

    CAS  Google Scholar 

  • Pandey VB, Singh AK, Pandey MB et al (2007) A new antifungal cyclopeptide alkaloid from Zizyphus mauritiana. J Indian Chem Soc 84:781–784

    Google Scholar 

  • Podder MK, Das BN, Saha A et al (2011) Analgesic activity of bark of Murraya paniculata. Int JMed Med Sci 3(4):105–108

    Google Scholar 

  • Rahman MA, Hasanuzzaman M, Uddin N et al (2010) Antidiarrhoeal and antiinflammatory activities ofMurraya paniculata (L.) Jack. PharmacolOnline 3:768–776

    Google Scholar 

  • Ramezani H, Singh HP, Batish DR et al (2002) Fungicidal effect of volatile oils fromEucalyptus citriodora and its major constituent citronellal. N Z Plant Protect 55:327–330

    Google Scholar 

  • Rawat U, Srivastava B, Semwal S (2006) Xanthones from Pinus roxburghii. J Indian Chem Soc 83(4):391–392

    CAS  Google Scholar 

  • Reamongkol W, Noppapan T, Subhadhirasakul S (2009) Antinociceptive, antipyretic, and antiinflammatory activity of Putranjiva roxburghiiwall. Leaf extract in experimental animals. J Nat Med 63(3):290–296

    Article  Google Scholar 

  • Rodanant P, Surarit R, Srichan R et al (2012) Cytotoxic and antiinflammatory activity of some Thai medicinal plants. J Med Plant Res 6:4063–4068

    Google Scholar 

  • Rodney L, Varela RM, Molinillo JMG et al (2012) Tectonoelins, new norlignans from bioactive extract ofTectona grandis. Phytochem Lett 5:382–386

    Article  Google Scholar 

  • Ruuhola TM, Julkunen-Tiitto MRK (2000) Salicylates of intact Salix myrsinifolia plantlets do not undergo rapid metabolic turnover. Plant Physiol 122:895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeed S, Shah S, Mehmood R et al (2011) Paniculacin, a new coumarin derivative from Murraya paniculata. J Asian Nat Prod Res 13:724–727

    Article  CAS  PubMed  Google Scholar 

  • Salem AZM, Salem MZM, Gonzalez-Ronquillo M et al (2011) Major chemical constituents of Leucaena leucocephala and Salix babylonica leaf extracts. J Trop Agric 49(1–2):95–98

    CAS  Google Scholar 

  • Selim MA, El-Askary HL, Sanad OA et al (2006) Phytochemical and pharmacological study of Pterospermum acerifoliumwilld. Growing in Egypt. Bull Fac Pharm 44:119–123

    CAS  Google Scholar 

  • Shah S, Saied S, Mahmood A et al (2014) Phytochemical screening of volatile constituents from aerial parts of Murraya paniculata. Pak J Bot 46:2051–2056

    Google Scholar 

  • Sharker SM, Shahid IJ, Hasanuzzaman M (2009) Antinociceptive and bioactivity of leaves of Murraya paniculata (L.) Jack, Rutaceae. Braz J Pharm 19:746–748

    Google Scholar 

  • Sharma P, Samanta KC, Rathore KS (2011) Antipyretic activity of methanolic extract of root of Tectona grandis Linn. On albino rats. Int J Pharmacol Toxicol 1(2):28–33

    Google Scholar 

  • Shweta S, Deore SL, Khadabadi SS et al (2007) Evaluation of antimitotic and anticancer activity of the crude extracts of Pterospermum acerifolium willd leaves. Niger J Nat Prod Med 11:75–78

    Google Scholar 

  • Silva J, Abebe W, Sousa SM et al (2003) Analgesic and antiinflammatory effects of essential oils of Eucalyptus. J Ethnopharmacol 89:277–283

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Bhuyan TC, Ahmed A (1996) Ethnobotanical studies on the mishing tribes of Assam with special reference to food and medicinal plant. J Econ Taxon Bot 12:350–356

    Google Scholar 

  • Smith NM (1991) Ethnobotanical field notes from northern territory, Australia. State Herbarium, Botanic Gardens, Adelaide

    Google Scholar 

  • Sultana S, Akhtar N, Asif HM (2013) Phytochemical screening and antipyretic effects of hydro-methanol extract of Melia azedarach leaves in rabbits. Bangladesh J Pharmacol 8:214–217

    Article  Google Scholar 

  • Sundaram M, Sivakumar K, Bhuvaneshwar A et al (2011) Studies on in vitro antibacterial, antifungal property and antioxidant potency of Murraya paniculata. Pak J Nutr 10:925–928

    Article  CAS  Google Scholar 

  • Vaghasiya Y, Nair R, Chanda S (2008) Antibacterial and preliminary phytochemical and physio-chemical analysis ofEucalyptus citriodora Hk leaf. Nat Prod Res 22:754–762

    Article  CAS  PubMed  Google Scholar 

  • Wang XZ, Ma YD, Li XW et al (2007) Structural elucidation of methoxyflavone compounds extracted from the leaves of Murraya exoticaL. by NMR spectroscopy. Chin J Magn Reson 24:341–346. (in Chinese)

    CAS  Google Scholar 

  • Wei QL, Jiang CH, Chu SS et al (2010) Chemical composition and toxicity against Sitophilus zeamaisand Tribolium castaneumof the essential oil of Murraya exoticaaerial parts. Molecules 15:5831–5839

    Article  Google Scholar 

  • Williams CJ (2010) Medicinal plants in Australia, vol I. Bush Pharmacy, Rosenberg

    Google Scholar 

  • Wiyono B, Tachibana S, Tinambunan D (2006) Chemical compositions of pine resins, rosin and turpentine oil from west java. J For Res 3(1):7–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Khan, A.S. (2017). Antipyretic and Analgesic Activities of Some Economically Important Woody Plants. In: Medicinally Important Trees. Springer, Cham. https://doi.org/10.1007/978-3-319-56777-8_7

Download citation

Publish with us

Policies and ethics