Skip to main content

Classification, Pathobiology, Molecular Markers, and Intraoperative Pathology

  • Chapter
  • First Online:
Transsphenoidal Surgery

Abstract

Tumors of the pituitary gland and sellar region represent approximately 15% of all brain tumors (Ostrom et al., Neuro Oncol 16: iv1–iv63, 2014). Numerous types of tumors may involve the sellar region, reflecting its complex anatomy. Table 9.1 lists the most frequent tumors arising in this region. The most common tumors are, by far, the pituitary adenomas representing the third most common primary intracranial tumor in neurosurgical practice, outnumbered only by gliomas and meningiomas (Ostrom et al., Neuro Oncol 16: iv1–iv63, 2014).

In this chapter, we will highlight the main histopathological and molecular genetics aspects of pituitary neuroendocrine (i.e., adenomas) and non-neuroendocrine tumors involving the pituitary gland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, Wolinsky Y, Kruchko C, Barnholtz-Sloan J. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-Oncology. 2014;16(Suppl 4):iv1–63.

    PubMed  PubMed Central  Google Scholar 

  2. Saeger W, Lüdecke DK, Buchfelder M, Fahlbusch R, Quabbe HJ, Petersenn S. Pathohistological classification of pituitary tumors: 10 years of experience with the German pituitary tumor registry. Eur J Endocrinol. 2007;156(2):203–16.

    CAS  PubMed  Google Scholar 

  3. Meij BP, Lopes MB, Ellegala DB, Alden TD, Laws Jr ER. The long-term significance of microscopic dural invasion in 354 patients with pituitary adenomas treated with transsphenoidal surgery. J Neurosurg. 2002;96(2):195–208.

    PubMed  Google Scholar 

  4. Thompson LD, Seethala RR, Müller S. Ectopic sphenoid sinus pituitary adenoma (ESSPA) with normal anterior pituitary gland: a clinicopathologic and immunophenotypic study of 32 cases with a comprehensive review of the English literature. Head Neck Pathol. 2012;6(1):75–100.

    PubMed  PubMed Central  Google Scholar 

  5. Fernandez A, Karavitaki N, Wass JA. Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol. 2010;72(3):377–82.

    Google Scholar 

  6. Ezzat S, Asa SL, Couldwell WT, et al. The prevalence of pituitary adenomas: a systematic review. Cancer. 2004;101:613–9.

    PubMed  Google Scholar 

  7. Daly AF, Tichomirowa MA, Beckers A. Genetic, molecular and clinical features of familial isolated pituitary adenomas. Horm Res. 2009;71(Suppl 2):116–22.

    CAS  PubMed  Google Scholar 

  8. Vergès B, Boureille F, Goudet P, Murat A, Beckers A, Sassolas G, Cougard P, Chambe B, Montvernay C, Calender A. Pituitary disease in MEN type 1 (MEN1): data from the France-Belgium MEN1 multicenter study. J Clin Endocrinol Metab. 2002;87(2):457–65.

    PubMed  Google Scholar 

  9. Thakker RV. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol. 2014;386(1–2):2–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Daly AF, Tichomirowa MA, Beckers A. Update on familial pituitary tumors: from multiple endocrine neoplasia type 1 to familial isolated pituitary adenoma. Horm Res. 2009;71(Suppl 1):105–11.

    CAS  PubMed  Google Scholar 

  11. Stratakis CA, Tichomirowa MA, Boikos S, Azevedo MF, Lodish M, Martari M, Verma S, Daly AF, Raygada M, Keil MF, Papademetriou J, Drori-Herishanu L, Horvath A, Tsang KM, Nesterova M, Franklin S, Vanbellinghen JF, Bours V, Salvatori R, Beckers A. The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. Clin Genet. 2010;78(5):457–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Alband N, Korbonits M. Familial pituitary tumors. Handb Clin Neurol. 2014;124:339–60.

    PubMed  Google Scholar 

  13. Xekouki P, Stratakis CA. Succinate dehydrogenase (SDHx) mutations in pituitary tumors: could this be a new role for mitochondrial complex II and/or Krebs cycle defects? Endocr Relat Cancer. 2012;19(6):C33–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dénes J, Swords F, Rattenberry E, Stals K, Owens M, Cranston T, Xekouki P, Moran L, Kumar A, Wassif C, Fersht N, Baldeweg SE, Morris D, Lightman S, Agha A, Rees A, Grieve J, Powell M, Boguszewski CL, Dutta P, Thakker RV, Srirangalingam U, Thompson CJ, Druce M, Higham C, Davis J, Eeles R, Stevenson M, O'Sullivan B, Taniere P, Skordilis K, Gabrovska P, Barlier A, Webb SM, Aulinas A, Drake WM, Bevan JS, Preda C, Dalantaeva N, Ribeiro-Oliveira Jr A, Garcia IT, Yordanova G, Iotova V, Evanson J, Grossman AB, Trouillas J, Ellard S, Stratakis CA, Maher ER, Roncaroli F, Korbonits M. Heterogeneous genetic background of the association of pheochromocytoma/paraganglioma and pituitary adenoma: results from a large patient cohort. J Clin Endocrinol Metab. 2015;100(3):E531–41.

    PubMed  Google Scholar 

  15. Hernández-Ramírez LC, Gabrovska P, Dénes J, Stals K, Trivellin G, Tilley D, Ferrau F, Evanson J, Ellard S, Grossman AB, Roncaroli F, Gadelha MR. Korbonits M; international FIPA consortium. Landscape of familial isolated and young-onset pituitary adenomas: prospective diagnosis in AIP mutation carriers. J Clin Endocrinol Metab. 2015;100(9):E1242–54.

    PubMed  PubMed Central  Google Scholar 

  16. Beckers A, Lodish MB, Trivellin G, Rostomyan L, Lee M, Faucz FR, Yuan B, Choong CS, Caberg JH, Verrua E, Naves LA, Cheetham TD, Young J, Lysy PA, Petrossians P, Cotterill A, Shah NS, Metzger D, Castermans E, Ambrosio MR, Villa C, Strebkova N, Mazerkina N, Gaillard S, Barra GB, Casulari LA, Neggers SJ, Salvatori R, Jaffrain-Rea ML, Zacharin M, Santamaria BL, Zacharieva S, Lim EM, Mantovani G, Zatelli MC, Collins MT, Bonneville JF, Quezado M, Chittiboina P, Oldfield EH, Bours V, Liu P, W de Herder W, Pellegata N, Lupski JR, Daly AF, Stratakis CA. X-linked acrogigantism syndrome: clinical profile and therapeutic responses. Endocr Relat Cancer. 2015;22(3):353–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sahakitrungruang T, Srichomthong C, Pornkunwilai S, Amornfa J, Shuangshoti S, Kulawonganunchai S, Suphapeetiporn K, Shotelersuk V. Germline and somatic DICER1 mutations in a pituitary blastoma causing infantile-onset Cushing’s disease. J Clin Endocrinol Metab. 2014;99(8):E1487–92.

    CAS  PubMed  Google Scholar 

  18. de Kock L, Sabbaghian N, Plourde F, Srivastava A, Weber E, Bouron-Dal Soglio D, Hamel N, Choi JH, Park SH, Deal CL, Kelsey MM, Dishop MK, Esbenshade A, Kuttesch JF, Jacques TS, Perry A, Leichter H, Maeder P, Brundler MA, Warner J, Neal J, Zacharin M, Korbonits M, Cole T, Traunecker H, McLean TW, Rotondo F, Lepage P, Albrecht S, Horvath E, Kovacs K, Priest JR, Foulkes WD. Pituitary blastoma: a pathognomonic feature of germ-line DICER1 mutations. Acta Neuropathol. 2014;128(1):111–22.

    PubMed  PubMed Central  Google Scholar 

  19. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature. 1989;340(6236):692–6.

    CAS  PubMed  Google Scholar 

  20. Lania A, Mantovani G, Spada A. Genetics of pituitary tumors: focus on G-protein mutations. Exp Biol Med. 2003;228:1004–17.

    CAS  Google Scholar 

  21. Preda V, Korbonits M, Cudlip S, Karavitaki N, Grossman AB. Low rate of germline AIP mutations in patients with apparently sporadic pituitary adenomas before the age of 40: a single-centre adult cohort. Eur J Endocrinol. 2014;171(5):659–66.

    CAS  PubMed  Google Scholar 

  22. Iacovazzo D, Caswell R, Bunce B, Jose S, Yuan B, Hernández-Ramírez LC, Kapur S, Caimari F, Evanson J, Ferraù F, Dang MN, Gabrovska P, Larkin SJ, Ansorge O, Rodd C, Vance ML, Ramírez-Renteria C, Mercado M, Goldstone AP, Buchfelder M, Burren CP, Gurlek A, Dutta P, Choong CS, Cheetham T, Trivellin G, Stratakis CA, Lopes MB, Grossman AB, Trouillas J, Lupski JR, Ellard S, Sampson JR, Roncaroli F, Korbonits M. Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study. Acta Neuropathol Commun. 2016;4(1):56.

    PubMed  PubMed Central  Google Scholar 

  23. Reincke M, Sbiera S, Hayakawa A, Theodoropoulou M, Osswald A, Beuschlein F, Meitinger T, Mizuno-Yamasaki E, Kawaguchi K, Saeki Y, Tanaka K, Wieland T, Graf E, Saeger W, Ronchi CL, Allolio B, Buchfelder M, Strom TM, Fassnacht M, Komada M. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat Genet. 2015;47(1):31–8.

    CAS  PubMed  Google Scholar 

  24. Ma ZY, Song ZJ, Chen JH, Wang YF, Li SQ, Zhou LF, Mao Y, Li YM, Hu RG, Zhang ZY, Ye HY, Shen M, Shou XF, Li ZQ, Peng H, Wang QZ, Zhou DZ, Qin XL, Ji J, Zheng J, Chen H, Wang Y, Geng DY, Tang WJ, Fu CW, Shi ZF, Zhang YC, Ye Z, He WQ, Zhang QL, Tang QS, Xie R, Shen JW, Wen ZJ, Zhou J, Wang T, Huang S, Qiu HJ, Qiao ND, Zhang Y, Pan L, Bao WM, Liu YC, Huang CX, Shi YY, Zhao Y. Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res. 2015;25(3):306–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Perez-Rivas LG, Theodoropoulou M, Ferraù F, Nusser C, Kawaguchi K, Stratakis CA, Faucz FR, Wildemberg LE, Assié G, Beschorner R, Dimopoulou C, Buchfelder M, Popovic V, Berr CM, Tóth M, Ardisasmita AI, Honegger J, Bertherat J, Gadelha MR, Beuschlein F, Stalla G, Komada M, Korbonits M, Reincke M. The Gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing Cushing’s disease. J Clin Endocrinol Metab. 2015;100(7):E997–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu R, Melmed S. Oncogene activation in pituitary tumors. Brain Pathol. 2001;11(3):328–41.

    CAS  PubMed  Google Scholar 

  27. Suhardja A, Kovacs K, Rutka J. Genetic basis of pituitary adenoma invasiveness: a review. J Neuro-Oncol. 2001;52(3):195–204.

    CAS  Google Scholar 

  28. Tanizaki Y, Jin L, Scheithauer BW, Kovacs K, Roncaroli F, Lloyd RV. P53 gene mutations in pituitary carcinomas. Endocr Pathol. 2007;18(4):217–22.

    CAS  PubMed  Google Scholar 

  29. Levy A, Hall L, Yeudall WA, Lightman SL. p53 gene mutations in pituitary adenomas: rare events. Clin Endocrinol. 1994;41(6):809–14.

    CAS  Google Scholar 

  30. Greenman Y, Stern N. Non-functioning pituitary adenomas. Best Pract Res Clin Endocrinol Metab. 2009;23:625–38.

    CAS  PubMed  Google Scholar 

  31. Osamura RY, Grossman A, Korbonits M, Kovacs K, Lopes MBS, Matsuno TJ. Pituitary adenoma. Pituitary tumors: introduction. In: World Health Organization classification of tumours. Pathology and genetics of tumours of endocrine organs. Lyon: IARC Press; 2016. In Press.

    Google Scholar 

  32. Zhu X, Rosenfeld MG. Transcriptional control of precursor proliferation in the early phases of pituitary development. Curr Opin Genet Dev. 2004;14(5):567–74.

    CAS  PubMed  Google Scholar 

  33. Bodner M, Castrillo JL, Theill LE, Deerinck T, Ellisman M, Karin M. The pituitary-specific transcription factor GHF-1 is a homeobox-containing protein. Cell. 1988;55(3):505–18.

    CAS  PubMed  Google Scholar 

  34. Ingraham HA, Chen RP, Mangalam HJ, Elsholtz HP, Flynn SE, Lin CR, Simmons DM, Swanson L, Rosenfeld MG. A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype. Cell. 1988;55(3):519–29.

    CAS  PubMed  Google Scholar 

  35. Ingraham HA, Lala DS, Ikeda Y, Luo X, Shen WH, Nachtigal MW, Abbud R, Nilson JH, Parker KL. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev. 1994;8(19):2302–12.

    CAS  PubMed  Google Scholar 

  36. Steger DJ, Hecht JH, Mellon PL. GATA-binding proteins regulate the human gonadotropin alpha-subunit gene in the placenta and pituitary gland. Mol Cell Biol. 1994;14(8):5592–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao L, Bakke M, Krimkevich Y, Cushman LJ, Parlow AF, Camper SA, Parker KL. Steroidogenic factor 1 (SF1) is essential for pituitary gonadotrope function. Development. 2001;128(2):147–54.

    CAS  PubMed  Google Scholar 

  38. Poulin G, Lebel M, Chamberland M, Paradis FW, Drouin J. Specific protein-protein interaction between basic helix-loop-helix transcription factors and homeoproteins of the Pitx family. Mol Cell Biol. 2000;20(13):4826–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pulichino AM, Vallette-Kasic S, Tsai JP, Couture C, Gauthier Y, Drouin J. Tpit determines alternate fates during pituitary cell differentiation. Genes Dev. 2003;17(6):738–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Friend KE, Chiou YK, Laws Jr ER, Lopes MB, Shupnik MA. Pit-1 messenger ribonucleic acid is differentially expressed in human pituitary adenomas. J Clin Endocrinol Metab. 1993;77(5):1281–6.

    CAS  PubMed  Google Scholar 

  41. Asa SL, Puy LA, Lew AM, Sundmark VC, Elsholtz HP. Cell type-specific expression of the pituitary transcription activator pit-1 in the human pituitary and pituitary adenomas. J Clin Endocrinol Metab. 1993;77(5):1275–80.

    CAS  PubMed  Google Scholar 

  42. Lloyd RV, Osamura RY. Transcription factors in normal and neoplastic pituitary tissues. Microsc Res Tech. 1997;39(2):168–81.

    CAS  PubMed  Google Scholar 

  43. Tateno T, Izumiyama H, Doi M, Yoshimoto T, Shichiri M, Inoshita N, Oyama K, Yamada S, Hirata Y. Differential gene expression in ACTH -secreting and non-functioning pituitary tumors. Eur J Endocrinol. 2007;157(6):717–24.

    CAS  PubMed  Google Scholar 

  44. Tani Y, Sugiyama T, Izumiyama H, Yoshimoto T, Yamada S, Hirata Y. Differential gene expression profiles of POMC-related enzymes, transcription factors and receptors between non-pituitary and pituitary ACTH-secreting tumors. Endocr J. 2011;58(4):297–303.

    CAS  PubMed  Google Scholar 

  45. Asa SL, Bamberger AM, Cao B, Wong M, Parker KL, Ezzat S. The transcription activator steroidogenic factor-1 is preferentially expressed in the human pituitary gonadotroph. J Clin Endocrinol Metab. 1996;81(6):2165–70.

    CAS  PubMed  Google Scholar 

  46. Nishioka H, Inoshita N, Mete O, Asa SL, Hayashi K, Takeshita A, Fukuhara N, Yamaguchi-Okada M, Takeuchi Y, Yamada S. The complementary role of transcription factors in the accurate diagnosis of clinically nonfunctioning pituitary adenomas. Endocr Pathol. 2015;26(4):349–55.

    CAS  PubMed  Google Scholar 

  47. Glezer A, Bronstein MD. Prolactinomas. Endocrinol Metab Clin N Am. 2015;44(1):71–8.

    Google Scholar 

  48. Trouillas J, Labat-Moleur F, Sturm N, Kujas M, Heymann MF, Figarella-Branger D, Patey M, Mazucca M, Decullier E, Vergès B, Chabre O, Calender A, Groupe d'études des Tumeurs Endocrines. Pituitary tumors and hyperplasia in multiple endocrine neoplasia type 1 syndrome (MEN1): a case-control study in a series of 77 patients versus 2509 non-MEN1 patients. Am J Surg Pathol. 2008;32(4):534–43.

    PubMed  Google Scholar 

  49. Nose V, Grossman A, Mete O. Lactotroph adenoma. In: World Health Organization classification of tumours. Pathology and genetics of tumours of endocrine organs. 4th ed. Lyon: IARC Press; 2016. In Press.

    Google Scholar 

  50. Horvath E, Kovacs K. The adenohypophysis. In: Kovacs K, Asa SL, editors. Functional endocrine pathology. Boston: Blackwell Scientific Publications; 1991. p. 245–81.

    Google Scholar 

  51. Tindall GT, Kovacs K, Horvath E, Thorner MO. Human prolactin-producing adenomas and bromocriptine: a histological, immunocytochemical, ultrastructural and morphometric study. J Clin Endocrinol Metab. 1982;55:1178–83.

    CAS  PubMed  Google Scholar 

  52. Kovacs K, Stefaneanu L, Horvath E, et al. Effect of dopamine agonist medication on prolactin producing adenomas: a morphological study including immunocytochemistry, electron microscopy and in situ hybridization. Virchows Arch A Pathol Anat Histopathol. 1991;418:439–46.

    CAS  PubMed  Google Scholar 

  53. Horvath E, Kovacs K, Singer W, et al. Acidophil stem cell adenoma of the human pituitary: clinico-pathological analysis of 15 cases. Cancer. 1981;47:761–71.

    CAS  PubMed  Google Scholar 

  54. Melmed S. Acromegaly pathogenesis and treatment. J Clin Invest. 2009;119(11):3189–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kreutzer J, Vance ML, Lopes MBS, et al. Surgical management of GH-secreting pituitary adenomas: an outcome study using modern remission criteria. J Clin Endocrinol Metab. 2001;86:4072–7.

    CAS  PubMed  Google Scholar 

  56. Neumann PE, Goldman JR, Horoupian DS, Hess MA. Fibrous bodies in growth hormone-secreting adenomas contain cytokeratin filaments. Arch Pathol Lab Med. 1985;109:505–8.

    CAS  PubMed  Google Scholar 

  57. Yamada S, Aiba T, Sano T, et al. Growth hormone producing pituitary adenomas: correlations between clinical characteristics and morphology. Neurosurgery. 1993;33:20–7.

    CAS  PubMed  Google Scholar 

  58. Obari A, Sano T, Ohyama K, Kudo E, Qian ZR, Yoneda A, Rayhan N, Mustafizur Rahman M, Yamada S. Clinicopathological features of growth hormone-producing pituitary adenomas: difference among various types defined by cytokeratin distribution pattern including a transitional form. Endocr Pathol. 2008;19(2):82–91.

    PubMed  Google Scholar 

  59. Bhayana S, Booth GL, Asa SL, et al. The implication of somatotroph adenoma phenotype to somatostatin analog responsiveness in acromegaly. J Clin Endocrinol Metab. 2005;90:6290–5.

    CAS  PubMed  Google Scholar 

  60. Mete O, Korbonits M, Osamura RY, Trouillas J, Yamada S. Somatotroph adenoma. In: World Health Organization classification of tumours. Pathology and genetics of tumours of endocrine organs. 4th ed. Lyon: IARC Press; 2016. In Press.

    Google Scholar 

  61. Lloyd RV, Gikas RV, Chandler WF. Prolactin and growth hormone-producing pituitary adenomas: an immunohistochemical and ultrastructural study. Am J Surg Pathol. 1983;7:251–60.

    CAS  PubMed  Google Scholar 

  62. Felix IA, Horvath E, Kovacs K, et al. Mammosomatotroph adenoma of the pituitary associated with gigantism and hyperprolactinemia. A morphological study including immunoelectron microscopy. Acta Neuropathol. 1986;71:76–82.

    CAS  PubMed  Google Scholar 

  63. Kovacs K. Classification of pituitary adenomas. J Neuro-Oncol. 2001;54:121–7.

    CAS  Google Scholar 

  64. Newell-Price J, Bertagna X, Grossman AB, et al. Cushing’s syndrome. Lancet. 2006;367:1605–17.

    CAS  PubMed  Google Scholar 

  65. Batista DL, Oldfield EH, Keil MF, Stratakis CA. Postoperative testing to predict recurrent Cushing disease in children. J Clin Endocrinol Metab. 2009;94:2757–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Storr HL, Plowman PN, Carroll PV, et al. Clinical and endocrine responses to pituitary radiotherapy in pediatric Cushing’s disease: an effective second-line treatment. J Clin Endocrinol Metab. 2003;88:34–7.

    CAS  PubMed  Google Scholar 

  67. Dias RP, Kumaran A, Chan LF, Martin L, Afshar F, Matson M, Plowman PN, Monson JP, Besser GM, Grossman AB, Savage MO, Storr HL. Diagnosis, management and therapeutic outcome in prepubertal Cushing’s disease. Eur J Endocrinol. 2010;162(3):603–9.

    CAS  PubMed  Google Scholar 

  68. Yaneva M, Vandeva S, Zacharieva S, Daly AF, Beckers A. Genetics of Cushing’s syndrome. Neuroendocrinology. 2010;92(Suppl 1):6–10.

    CAS  PubMed  Google Scholar 

  69. Simonds WF, Varghese S, Marx SJ, Nieman LK. Cushing’s syndrome in multiple endocrine neoplasia type 1. Clin Endocrinol. 2012;76(3):379–86.

    CAS  Google Scholar 

  70. Stefaneanu L, Kovacs K, Horvath E, Lloyd RV. In situ hybridization study of proopiomelanocortin (POMC) gene expression in human pituitary corticotrophs and their adenomas. Virchows Arch A Pathol Anat Histopathol. 1991;419:107–13.

    CAS  PubMed  Google Scholar 

  71. Neumann PE, Horoupian DS, Goldman JE, Hess MA. Cytoplasmic filaments of Crooke’s hyaline change belong to the cyokeratin class: an immunocytochemical and ultrastructural study. Am J Pathol. 1984;116:214–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Di Ieva A, Davidson JM, Syro LV, Rotondo F, Montoya JF, Horvath E, Cusimano MD, Kovacs K. Crooke’s cell tumors of the pituitary. Neurosurgery. 2015;76(5):616–22.

    PubMed  Google Scholar 

  73. George DH, Scheithauer BW, Kovacs K, Horvath E, Young Jr WF, Lloyd RV, Meyer FB. Crooke’s cell adenoma of the pituitary: an aggressive variant of corticotroph adenoma. Am J Surg Pathol. 2003;27(10):1330–6.

    PubMed  Google Scholar 

  74. Scheithauer BW, Jaap AL, Horvath E, et al. Clinically silent corticotroph tumors of the pituitary gland. Neurosurgery. 2000;47:723–30.

    CAS  PubMed  Google Scholar 

  75. Webb KM, Laurent JL, Okonkwo D, et al. Clinical characteristics of silent corticotrophic adenomas and creation of an internet-accessible database to facilitate their multi-institutional study. Neurosurgery. 2003;53:1076–85.

    PubMed  Google Scholar 

  76. Xu Z, Ellis S, Lee CC, Starke RM, Schlesinger D, Lee Vance M, Lopes MB, Sheehan J. Silent corticotroph adenomas after stereotactic radiosurgery: a case-control study. Int J Radiat Oncol Biol Phys. 2014;90(4):903–10.

    PubMed  Google Scholar 

  77. Horvath E, Kovacs K, Killinger DW, et al. Silent corticotropic adenomas of the human pituitary gland: a histologic, immunocytologic and ultrastructural study. Am J Pathol. 1980;98:617–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mete O, Hayhurst C, Alahmadi H, Monsalves E, Gucer H, Gentili F, Ezzat S, Asa SL, Zadeh G. The role of mediators of cell invasiveness, motility, and migration in the pathogenesis of silent corticotroph adenomas. Endocr Pathol. 2013;24(4):191–8.

    PubMed  Google Scholar 

  79. Osamura RY, Grossman A, Nishioka H, Trouillas J. Thyrotroph adenoma. In: World Health Organization classification of tumours. Pathology and genetics of tumours of endocrine organs. 4th ed. Lyon: IARC Press; 2016. In Press.

    Google Scholar 

  80. Yamada S, Fukuhara N, Horiguchi K, Yamaguchi-Okada M, Nishioka H, Takeshita A, Takeuchi Y, Ito J, Inoshita N. Clinicopathological characteristics and therapeutic outcomes in thyrotropin-secreting pituitary adenomas: a single-center study of 90 cases. J Neurosurg. 2014;121(6):1462–73.

    PubMed  Google Scholar 

  81. Beck-Peccoz P, Persani L, Lania A. Thyrotropin-secreting pituitary adenomas. 2015 May 1. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, Koch C, McLachlan R, New M, Rebar R, Singer F, Vinik A, Weickert MO, editors. Endotext [Internet]. South Dartmouth: MDText.com, Inc.; 2000.Available from http://www.ncbi.nlm.nih.gov/books/NBK278978/.

  82. Beck-Peccoz P, Persani L, Mannavola D, Campi I. Pituitary tumours: TSH-secreting adenomas. Best Pract Res Clin Endocrinol Metab. 2009;23(5):597–606.

    CAS  PubMed  Google Scholar 

  83. Scheithauer BW, Kovacs K, Nose V, Lombardero M, Osamura YR, Lloyd RV, Horvath E, Pagenstecher A, Bohl JE, Tews DS. Multiple endocrine neoplasia type 1-associated thyrotropin-producing pituitary carcinoma: report of a probable de novo example. Hum Pathol. 2009;40(2):270–8.

    CAS  PubMed  Google Scholar 

  84. Wang EL, Qian ZR, Yamada S, Rahman MM, Inosita N, Kageji T, Endo H, Kudo E, Sano T. Clinicopathological characterization of TSH-producing adenomas: special reference to TSH-immunoreactive but clinically non-functioning adenomas. Endocr Pathol. 2009;20(4):209–20.

    CAS  PubMed  Google Scholar 

  85. Kirkman MA, Jaunmuktane Z, Brandner S, Khan AA, Powell M, Baldeweg SE. Active and silent thyroid-stimulating hormone-expressing pituitary adenomas: presenting symptoms, treatment, outcomes, and recurrence. World Neurosurg. 2014;82(6):1224–31.

    PubMed  Google Scholar 

  86. Umeoka K, Sanno N, Osamura RY, Teramoto A. Expression of GATA-2 in human pituitary adenomas. Mod Pathol. 2002;15(1):11–7.

    PubMed  Google Scholar 

  87. Yamada S, Osamura RY, Righi A, Trouillas J. Gonadotroph Adenoma. In: World Health Organization classification of tumours. Pathology and genetics of tumours of endocrine organs. 4th ed. Lyon: IARC Press; 2016. In Press.

    Google Scholar 

  88. Young WF, Scheithauer BW, Kovacs K, et al. Gonadotroph adenoma of the pituitary gland: a clinicopathologic analysis of 100 cases. Mayo Clin Proc. 1996;71:649–56.

    PubMed  Google Scholar 

  89. Ntali G, Capatina C, Grossman A, Karavitaki N. Clinical review: functioning gonadotroph adenomas. J Clin Endocrinol Metab. 2014;99(12):4423–33.

    CAS  PubMed  Google Scholar 

  90. Yamada S, Ohyama K, Taguchi M, Takeshita A, Morita K, Takano K, Sano T. A study of the correlation between morphological findings and biological activities in clinically nonfunctioning pituitary adenomas. Neurosurgery. 2007;61(3):580–4; discussion 584–5.

    Google Scholar 

  91. Yamaguchi-Okada M, Inoshita N, Nishioka H, Fukuhara N, Yamada S. Clinicopathological analysis of nonfunctioning pituitary adenomas in patients younger than 25 years of age. J Neurosurg Pediatr. 2012;9(5):511–6.

    PubMed  Google Scholar 

  92. Nishioka H, Kontogeorgos G, Lloyd RV, Lopes MBS, Mete O, Nose V. Null cell adenoma. In: World Health Organization classification of tumours. Pathology and genetics of tumours of endocrine organs. 4th ed. Lyon: IARC Press; 2016. In Press.

    Google Scholar 

  93. Kontogeorgos G, Kovacs K, Horvath E, Scheithauer BW. Null cell adenomas, oncocytomas and gonadotroph adenomas of the human pituitary: an immunocytochemical and ultrastructural analysis of 300 cases. Endocr Pathol. 1993;4:20–7.

    PubMed  Google Scholar 

  94. Balogun JA, Monsalves E, Juraschka K, Parvez K, Kucharczyk W, Mete O, Gentili F, Zadeh G. Null cell adenomas of the pituitary gland: an institutional review of their clinical imaging and behavioral characteristics. Endocr Pathol. 2015;26(1):63–70.

    PubMed  Google Scholar 

  95. Kontogeorgos G, Kovacs K, Lloyd RV, Righi A. Plurihormonal and double adenomas. In: World Health Organization classification of tumours. Pathology and genetics of tumours of endocrine organs. 4th ed. Lyon: IARC Press; 2016. In Press.

    Google Scholar 

  96. Horvath E, Kovacs K, Smyth HS, Killinger DW, Scheithauer BW, Randall R, Laws Jr ER, Singer W. A novel type of pituitary adenoma: morphological features and clinical correlations. J Clin Endocrinol Metab. 1988;66(6):1111–8.

    CAS  PubMed  Google Scholar 

  97. Erickson D, Scheithauer B, Atkinson J, Horvath E, Kovacs K, Lloyd RV, Young Jr WF. Silent subtype 3 pituitary adenoma: a clinicopathologic analysis of the Mayo Clinic experience. Clin Endocrinol. 2009;71(1):92–9.

    CAS  Google Scholar 

  98. Mete O, Gomez-Hernandez K, Kucharczyk W, Ridout R, Zadeh G, Gentili F, Ezzat S, Asa SL. Silent subtype 3 pituitary adenomas are not always silent and represent poorly differentiated monomorphous plurihormonal pit-1 lineage adenomas. Mod Pathol. 2016;29(2):131–42.

    CAS  PubMed  Google Scholar 

  99. Horvath E, Kovacs K, Smyth HS, Cusimano M, Singer W. Silent adenoma subtype 3 of the pituitary–immunohistochemical and ultrastructural classification: a review of 29 cases. Ultrastruct Pathol. 2005;29(6):511–24.

    CAS  PubMed  Google Scholar 

  100. Lloyd RV, Kovacs K, Young Jr WF, Farell WE, Asa SL, Trouillas J, Kontogeorgos G, Sano T, Scheithauer BW, Horvath E. Pituitary tumours: introduction. In: DeLellis RA, Lloyd RV, Heitz PU, Eng C, editors. World Health Organization classification of tumours. Pathology and genetics of tumours of endocrine organs. Lyon: IARC Press; 2004. p. 10–3.

    Google Scholar 

  101. Zada G, Woodmansee WW, Ramkissoon S, Amadio J, Nose V, Laws Jr ER. Atypical pituitary adenomas: incidence, clinical characteristics, and implications. J Neurosurg. 2011;114(2):336–44.

    PubMed  Google Scholar 

  102. Miermeister CP, Petersenn S, Buchfelder M, Fahlbusch R, Lüdecke DK, Hölsken A, Bergmann M, Knappe HU, Hans VH, Flitsch J, Saeger W, Buslei R. Histological criteria for atypical pituitary adenomas – data from the German pituitary adenoma registry suggests modifications. Acta Neuropathol Commun. 2015;3:50.

    PubMed  PubMed Central  Google Scholar 

  103. Chatzellis E, Alexandraki KI, Androulakis II, Kaltsas G. Aggressive pituitary tumors. Neuroendocrinology. 2015;101(2):87–104.

    CAS  PubMed  Google Scholar 

  104. Mete O, Ezzat S, Asa SL. Biomarkers of aggressive pituitary adenomas. J Mol Endocrinol. 2012;49(2):R69–78.

    CAS  PubMed  Google Scholar 

  105. Raverot G, Castinetti F, Jouanneau E, Morange I, Figarella-Branger D, Dufour H, Trouillas J, Brue T. Pituitary carcinomas and aggressive pituitary tumours: merits and pitfalls of temozolomide treatment. Clin Endocrinol. 2012;76(6):769–75.

    CAS  Google Scholar 

  106. Roncaroli F, Kovacs K, Lloyd RV, Matsuno RA. Pituitary Carcinoma. In: World Health Organization classification of tumours. Pathology and genetics of tumours of endocrine organs. 4th ed. Lyon: IARC Press; 2016. In Press.

    Google Scholar 

  107. Kaltsas GA, Nomikos P, Kontogeorgos G, Buchfelder M, Grossman AB. Clinical review: diagnosis and management of pituitary carcinomas. J Clin Endocrinol Metab. 2005;90(5):3089–99.

    CAS  PubMed  Google Scholar 

  108. Lopes MB, Scheithauer BW, Schiff D. Pituitary carcinoma: diagnosis and treatment. Endocrine. 2005;28(1):115–21.

    CAS  PubMed  Google Scholar 

  109. Nudleman KL, Choi B, Kusske JA. Primary pituitary carcinoma: a clinical pathological study. Neurosurgery. 1985;16(1):90–5.

    CAS  PubMed  Google Scholar 

  110. Luzi P, Miracco C, Lio R, Malandrini A, Piovani S, Giovanni Venezia S, Tosi P. Endocrine inactive pituitary carcinoma metastasizing to cervical lymph nodes: a case report. Hum Pathol. 1987;18(1):90–2.

    CAS  PubMed  Google Scholar 

  111. Pernicone PJ, Scheithauer BW, Sebo TJ, Kovacs KT, Horvath E, Young Jr WF, Lloyd RV, Davis DH, Guthrie BL, Schoene WC. Pituitary carcinoma: a clinicopathologic study of 15 cases. Cancer. 1997;79(4):804–12.

    CAS  PubMed  Google Scholar 

  112. Scheithauer BW, Kovacs K, Horvath E, Kim DS, Osamura RY, Ketterling RP, Lloyd RV, Kim OL. Pituitary blastoma. Acta Neuropathol. 2008;116(6):657–66.

    PubMed  Google Scholar 

  113. Scheithauer BW, Horvath E, Abel TW, Robital Y, Park SH, Osamura RY, Deal C, Lloyd RV, Kovacs K. Pituitary blastoma: a unique embryonal tumor. Pituitary. 2012;15(3):365–73.

    PubMed  Google Scholar 

  114. Zaben M, Zafar M, Bukhari S, Leach P, Hayhurst C. Endoscopic transsphenoidal approach for resection of malignant pituitary blastoma in an 18-month-old infant: a technical note. Neurosurgery. 2014;10(Suppl 4):649–53.

    PubMed  Google Scholar 

  115. Covington MF, Chin SS, Osborn AG. Pituicytoma, spindle cell oncocytoma, and granular cell tumor: clarification and meta-analysis of the world literature since 1893. Am J Neuroradiol. 2011;32:2067–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Brat DJ, Scheithauer BW, Staugaitis SM, Holtzman RN, Morgello S, Burger PC. Pituicytoma: a distinctive low-grade glioma of the neurohypophysis. Am J Surg Pathol. 2000;24:362–8.

    CAS  PubMed  Google Scholar 

  117. Fuller GN, Brat DJ, Wesseling P, Roncaroli F. Granular cell tumour of the sellar region. In: Louis DN, Ohgaki H, Wiestler OD, Cavenne C, editors. WHO classification of tumours of the central nervous system. Revised 4th ed. Lyon: IARC; 2016. p. 329–31.

    Google Scholar 

  118. Roncaroli F, Scheithauer BW, Cenacchi G, Horvath E, Kovacs K, Lloyd RV, Abell-Aleff P, Santi M, Yates AJ. ‘Spindle cell oncocytoma’ of the adenohypophysis: a tumor of folliculostellate cells? Am J Surg Pathol. 2002;26:1048–55.

    PubMed  Google Scholar 

  119. Lee EB, Tihan T, Scheithauer BW, Zhang PJ, Gonatas NK. Thyroid transcription factor 1 expression in sellar tumors: a histogenetic marker? J Neuropathol Exp Neurol. 2009;68:482–8.

    CAS  PubMed  Google Scholar 

  120. Mete O, Lopes MB, Asa SL. Spindle cell oncocytomas and granular cell tumors of the pituitary are variants of pituicytoma. Am J Surg Pathol. 2013;37:1694–9.

    PubMed  Google Scholar 

  121. Takei Y, Seyama S, Pearl GS, Tindall GT. Ultrastructural study of the human neurohypophysis. II. Cellular elements of neural parenchyma, the pituicytes. Cell Tissue Res. 1980;205:273–87.

    CAS  PubMed  Google Scholar 

  122. Brat DJ, Wesseling P, Fuller GN, Roncaroli F. Pituicytoma. In: Louis DN, Ohgaki H, Wiestler OD, Cavenne C, editors. WHO classification of tumours of the central nervous system. Revised 4th ed. Lyon: IARC; 2016. p. 332–3.

    Google Scholar 

  123. Lopes MBS, Fuller GN, Roncaroli F, Wesseling P. Spindle cell oncocytoma. In: Louis DN, Ohgaki H, Wiestler OD, Cavenne C, editors. WHO classification of tumours of the central nervous system. Revised 4th ed. Lyon: IARC; 2016. p. 334–6.

    Google Scholar 

  124. Schaller B, Kirsch E, Tolany M, Mindermann T. Symptomatic granular cell tumor of the pituitary gland: case report and review of the literature. Neurosurgery. 1998;42:166–70.

    CAS  PubMed  Google Scholar 

  125. Mu Q, Yu J, Qu L, Hu X, Gao H, Liu P, Zheng X, Sun Y, Huang H. Spindle cell oncocytoma of the adenohypophysis: two case reports and a review of the literature. Mol Med Rep. 2015;12(1):871–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kloub O, Perry A, Tu PH, Lipper M, Lopes MB. Spindle cell oncocytoma of the adenohypophysis: report of two recurrent cases. Am J Surg Pathol. 2005;29(2):247–53.

    PubMed  Google Scholar 

  127. Buslei R, Rushing EJ, Giangaspero F, Paulus W, Burger PC, Santagata S. Craniopharyngioma. In: Louis DN, Ohgaki H, Wiestler OD, Cavenne C, editors. WHO classification of tumours of the central nervous system. Revised 4th ed. Lyon: IARC; 2016. p. 324–8.

    Google Scholar 

  128. Zada G, Lin N, Ojerholm E, Ramkissoon S, Laws ER. Craniopharyngioma and other cystic epithelial lesions of the sellar region: a review of clinical, imaging, and histopathological relationships. Neurosurg Focus. 2010;28(4):E4.

    PubMed  Google Scholar 

  129. Sartoretti-Schefer S, Wichmann W, Aguzzi A, Valavanis A. MR differentiation of adamantinous and squamous-papillary craniopharyngiomas. AJNR Am J Neuroradiol. 1997;18(1):77–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Buslei R, Nolde M, Hofmann B, Meissner S, Eyupoglu IY, Siebzehnrubl F, Hahnen E, Kreutzer J, Fahlbusch R. Common mutations of beta-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Neuropathol. 2005;109:589–97.

    CAS  PubMed  Google Scholar 

  131. Brastianos PK, Taylor-Weiner A, Manley PE, Jones RT, Dias-Santagata D, Thorner AR, Lawrence MS, Rodriguez FJ, Bernardo LA, Schubert L, Sunkavalli A, Shillingford N, Calicchio ML, Lidov HG, Taha H, Martinez-Lage M, Santi M, Storm PB, Lee JY, Palmer JN, Adappa ND, Scott RM, Dunn IF, Laws Jr ER, Stewart C, Ligon KL, Hoang MP, Van Hummelen P, Hahn WC, Louis DN, Resnick AC, Kieran MW, Getz G, Santagata S. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet. 2014;46:161–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Hölsken A, Sill M, Merkle J, Schweizer L, Buchfelder M, Flitsch J, Fahlbusch R, Metzler M, Kool M, Pfister SM, von Deimling A, Capper D, Jones DT, Buslei R. Adamantinomatous and papillary craniopharyngiomas are characterized by distinct epigenomic as well as mutational and transcriptomic profiles. Acta Neuropathol Commun. 2016;4:20.

    PubMed  PubMed Central  Google Scholar 

  133. Hofmann BM, Kreutzer J, Saeger W, Buchfelder M, Blümcke I, Fahlbusch R, Buslei R. Nuclear beta-catenin accumulation as reliable marker for the differentiation between cystic craniopharyngiomas and rathke cleft cysts: a clinico-pathologic approach. Am J Surg Pathol. 2006;30(12):1595–603.

    PubMed  Google Scholar 

  134. Larkin SJ, Preda V, Karavitaki N, Grossman A, Ansorge O. BRAF V600E mutations are characteristic for papillary craniopharyngioma and may coexist with CTNNB1-mutated adamantinomatous craniopharyngioma. Acta Neuropathol. 2014;127(6):927–9.

    PubMed  PubMed Central  Google Scholar 

  135. Le BH, Towfighi J, Kapadia SB, Lopes MB. Comparative immunohistochemical assessment of craniopharyngioma and related lesions. Endocr Pathol. 2007;18(1):23–30.

    CAS  PubMed  Google Scholar 

  136. Schweizer L, Capper D, Hölsken A, Fahlbusch R, Flitsch J, Buchfelder M, Herold-Mende C, von Deimling A, Buslei R. BRAF V600E analysis for the differentiation of papillary craniopharyngiomas and Rathke’s cleft cysts. Neuropathol Appl Neurobiol. 2015;41(6):733–42.

    CAS  PubMed  Google Scholar 

  137. Kim JH, Paulus W, Heim S. BRAF V600E mutation is a useful marker for differentiating Rathke's cleft cyst with squamous metaplasia from papillary craniopharyngioma. J Neuro-Oncol. 2015;123(1):189–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Beatriz S. Lopes MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lopes, M.B.S. (2017). Classification, Pathobiology, Molecular Markers, and Intraoperative Pathology. In: Laws, Jr, E.R., Cohen-Gadol, A.A., Schwartz, T.H., Sheehan, J.P. (eds) Transsphenoidal Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-56691-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56691-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56689-4

  • Online ISBN: 978-3-319-56691-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics