Skip to main content

Molecular Profiling of Breast Cancer and DCIS

  • Chapter
  • First Online:
Breast Cancer Management for Surgeons
  • 2528 Accesses

Abstract

The clinical management of invasive breast cancer has changed dramatically in the last decade with the increasing use of multigene assays (MGAs) for guiding adjuvant treatment decisions. MGAs differ in terms of the technological platform used, the specific genes assessed and the patient populations in which they were developed and validated. This chapter provides an overview of currently available MGAs and discusses several studies that compare risk stratification with these MGAs on the same tumour samples. The chapter also describes the currently available MGA in DCIS and touches upon future directions for molecular profiling in breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  CAS  PubMed  Google Scholar 

  2. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  CAS  Google Scholar 

  4. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26.

    Article  CAS  PubMed  Google Scholar 

  5. Markopoulos C. Overview of the use of Oncotype DX((R)) as an additional treatment decision tool in early breast cancer. Expert Rev Anticancer Ther. 2013;13(2):179–94.

    Article  CAS  PubMed  Google Scholar 

  6. Cronin M, Sangli C, Liu ML, Pho M, Dutta D, Nguyen A, et al. Analytical validation of the Oncotype DX genomic diagnostic test for recurrence prognosis and therapeutic response prediction in node-negative, estrogen receptor-positive breast cancer. Clin Chem. 2007;53(6):1084–91.

    Article  CAS  PubMed  Google Scholar 

  7. Dowsett M, Cuzick J, Wale C, Forbes J, Mallon EA, Salter J, et al. Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol. 2010;28(11):1829–34.

    Article  PubMed  Google Scholar 

  8. Habel LA, Shak S, Jacobs MK, Capra A, Alexander C, Pho M, et al. A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res. 2006;8(3):R25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Toi M, Iwata H, Yamanaka T, Masuda N, Ohno S, Nakamura S, et al. Clinical significance of the 21-gene signature (Oncotype DX) in hormone receptor-positive early stage primary breast cancer in the Japanese population. Cancer. 2010;116(13):3112–8.

    Article  CAS  PubMed  Google Scholar 

  10. Albain KS, Barlow WE, Shak S, Hortobagyi GN, Livingston RB, Yeh IT, et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 2010;11(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  11. Simon R. Roadmap for developing and validating therapeutically relevant genomic classifiers. J Clin Oncol. 2005;23(29):7332–41.

    Article  CAS  PubMed  Google Scholar 

  12. Simon RM, Paik S, Hayes DF. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst. 2009;101(21):1446–52.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wolmark N, Mamounas EP, Baehner FL, Butler SM, Tang G, Jamshidian F, Sing AP, Shak S, Paik S. Prognostic impact of the combination of recurrence score and quantitative estrogen receptor expression (ESR1) on predicting late distant recurrence risk in estrogen receptor-positive breast cancer after 5 years of Tamoxifen: results from NRG oncology/National Surgical Adjuvant Breast and bowel project B-28 and B-14. J Clin Oncol. 2016;34(20):2350–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gray RG, Rea D, Handley K, Bowden SJ, Perry P, Earl HM, et al. aTTom: long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years in 6,953 women with early breast cancer. J Clin Oncol. 2013;31:supplement abstract 5.

    Article  Google Scholar 

  15. Davies C, Pan H, Godwin J, Gray R, Arriagada R, Raina V, et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet. 2013;381(9869):805–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Prospective validation of a 21-Gene expression assay in breast cancer. N Engl J Med. 2015;373(21):2005–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gluz O, Nitz UA, Christgen M, Kates RE, Shak S, Clemens M, et al. West German study group phase III PlanB trial: first prospective outcome data for the 21-gene recurrence score assay and concordance of prognostic markers by central and local pathology assessment. J Clin Oncol. 2016;34(20):2341–9. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  18. Stemmer SM, Steiner M, Rizel S, Soussan-Gutman L, Geffen DB, Nisenbaum B, et al. Real-life analysis evaluating 1594 N0/Nmic breast cancer patients for whom treatment decisions incorporated the 21-gene recurrence score result: 5-year KM estimate for breast cancer specific survival with recurrence score results ≤30 is >98%. Paper presented at: San Antonio Breast Cancer Symposium (SABCS); 8–12 Dec 2015; San Antonio.

    Google Scholar 

  19. Shak S, Petkov VI, Miller DP, Howlader N, Gliner N, Howe W, et al. Breast cancer specific survival in 38,568 patients with node negative hormone receptor positive invasive breast cancer and Oncotype DX Recurrence Score results in the SEER database. Paper presented at: San Antonio Breast Cancer Symposium (SABCS); 8–12 Dec 2015; San Antonio.

    Google Scholar 

  20. van ’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6.

    Article  PubMed  Google Scholar 

  21. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999–2009.

    Article  PubMed  Google Scholar 

  22. Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst. 2006;98(17):1183–92.

    Article  CAS  PubMed  Google Scholar 

  23. Wittner BS, Sgroi DC, Ryan PD, Bruinsma TJ, Glas AM, Male A, et al. Analysis of the MammaPrint breast cancer assay in a predominantly postmenopausal cohort. Clin Cancer Res. 2008;14(10):2988–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bueno-de-Mesquita JM, Linn SC, Keijzer R, Wesseling J, Nuyten DS, van Krimpen C, et al. Validation of 70-gene prognosis signature in node-negative breast cancer. Breast Cancer Res Treat. 2009;117(3):483–95.

    Article  CAS  PubMed  Google Scholar 

  25. Mook S, Schmidt MK, Viale G, Pruneri G, Eekhout I, Floore A, et al. The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1-3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat. 2009;116(2):295–302.

    Article  CAS  PubMed  Google Scholar 

  26. Mook S, Schmidt MK, Weigelt B, Kreike B, Eekhout I, van de Vijver MJ, et al. The 70-gene prognosis signature predicts early metastasis in breast cancer patients between 55 and 70 years of age. Ann Oncol. 2010;21(4):717–22.

    Article  CAS  PubMed  Google Scholar 

  27. Knauer M, Mook S, Rutgers EJ, Bender RA, Hauptmann M, van de Vijver MJ, et al. The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat. 2010;120(3):655–61.

    Article  CAS  PubMed  Google Scholar 

  28. Bueno-de-Mesquita JM, van Harten WH, Retel VP, van’t Veer LJ, van Dam FS, Karsenberg K, et al. Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER). Lancet Oncol. 2007;8(12):1079–87.

    Article  CAS  PubMed  Google Scholar 

  29. Drukker CA, Bueno-de-Mesquita JM, Retel VP, van Harten WH, van Tinteren H, Wesseling J, et al. A prospective evaluation of a breast cancer prognosis signature in the observational RASTER study. Int J Cancer. 2013;133(4):929–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sapino A, Roepman P, Linn SC, Snel MH, Delahaye LJ, van den Akker J, et al. MammaPrint molecular diagnostics on formalin-fixed, paraffin-embedded tissue. J Mol Diagn. 2014;16(2):190–7.

    Article  CAS  PubMed  Google Scholar 

  31. Piccart M, Rutgers E, van’t Veer L, Slaets L, Delaloge S, Viale G, et al. Primary analysis of the EORTC 10041/ BIG 304 MINDACT study: a prospective, randomized study evaluating the clinical utility of the 70 gene signature (MammaPrint) combined with common clinical pathological criteria for selection of patients for adjuvant chemotherapy in breast cancer with 0 to 3 positive nodes. Paper presented at: The American Association for Cancer Research (AACR) Annual Meeting; 16–20 Apr 2016; New Orleans.

    Google Scholar 

  32. Prosigna [Package Insert]. Seattle. WA: NanoString Technologies Inc; 2013.

    Google Scholar 

  33. Gnant M, Filipits M, Greil R, Stoeger H, Rudas M, Bago-Horvath Z, et al. Predicting distant recurrence in receptor-positive breast cancer patients with limited clinicopathological risk: using the PAM50 risk of recurrence score in 1478 postmenopausal patients of the ABCSG-8 trial treated with adjuvant endocrine therapy alone. Ann Oncol. 2014;25(2):339–45.

    Article  CAS  PubMed  Google Scholar 

  34. Dowsett M, Sestak I, Lopez-Knowles E, Sidhu K, Dunbier AK, Cowens JW, et al. Comparison of PAM50 risk of recurrence score with Oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol. 2013;31(22):2783–90.

    Article  PubMed  Google Scholar 

  35. Gnant M, Dowsett M, Filipits M, Lopez-Knowles E, Greil R, Balic M, et al. Identifying clinically relevant prognostic subgroups in node-positive postmenopausal HR+ early breast cancer patients treated with endocrine therapy: a combined analysis of 2,485 patients from ABCSG-8 and ATAC using the PAM50 risk of recurrence (ROR) score and intrinsic subtype. J Clin Oncol. 2013;31:supplement abstract 506.

    Article  Google Scholar 

  36. Liu S, Chapman JA, Burnell MJ, Levine MN, Pritchard KI, Whelan TJ, et al. Prognostic and predictive investigation of PAM50 intrinsic subtypes in the NCIC CTG MA.21 phase III chemotherapy trial. Breast Cancer Res Treat. 2015;149(2):439–48.

    Article  CAS  PubMed  Google Scholar 

  37. Sestak I, Dowsett M, Zabaglo L, Lopez-Knowles E, Ferree S, Cowens JW, et al. Factors predicting late recurrence for estrogen receptor-positive breast cancer. J Natl Cancer Inst. 2013;105(19):1504–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Filipits M, Rudas M, Jakesz R, Dubsky P, Fitzal F, Singer CF, et al. A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin Cancer Res. 2011;17(18):6012–20.

    Article  CAS  PubMed  Google Scholar 

  39. Dubsky P, Brase JC, Jakesz R, Rudas M, Singer CF, Greil R, et al. The EndoPredict score provides prognostic information on late distant metastases in ER+/HER2- breast cancer patients. Br J Cancer. 2013;109(12):2959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma XJ, Salunga R, Dahiya S, Wang W, Carney E, Durbecq V, et al. A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res. 2008;14(9):2601–8.

    Article  CAS  PubMed  Google Scholar 

  41. Jerevall PL, Ma XJ, Li H, Salunga R, Kesty NC, Erlander MG, et al. Prognostic utility of HOXB13:IL17BR and molecular grade index in early-stage breast cancer patients from the Stockholm trial. Br J Cancer. 2011;104(11):1762–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Habel LA, Sakoda LC, Achacoso N, Ma XJ, Erlander MG, Sgroi DC, et al. HOXB13:IL17BR and molecular grade index and risk of breast cancer death among patients with lymph node-negative invasive disease. Breast Cancer Res. 2013;15(2):R24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jankowitz RC, Cooper K, Erlander MG, Ma XJ, Kesty NC, Li H, et al. Prognostic utility of the breast cancer index and comparison to adjuvant! Online in a clinical case series of early breast cancer. Breast Cancer Res. 2011;13(5):R98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sgroi DC, Sestak I, Cuzick J, Zhang Y, Schnabel CA, Schroeder B, et al. Prediction of late distant recurrence in patients with oestrogen-receptor-positive breast cancer: a prospective comparison of the breast-cancer index (BCI) assay, 21-gene recurrence score, and IHC4 in the TransATAC study population. Lancet Oncol. 2013;14(11):1067–76.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang Y, Schnabel CA, Schroeder BE, Jerevall PL, Jankowitz RC, Fornander T, et al. Breast cancer index identifies early-stage estrogen receptor-positive breast cancer patients at risk for early- and late-distant recurrence. Clin Cancer Res. 2013;19(15):4196–205.

    Article  CAS  PubMed  Google Scholar 

  46. Ring BZ, Seitz RS, Beck R, Shasteen WJ, Tarr SM, Cheang MC, et al. Novel prognostic immunohistochemical biomarker panel for estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24(19):3039–47.

    Article  CAS  PubMed  Google Scholar 

  47. Ross DT, Kim CY, Tang G, Bohn OL, Beck RA, Ring BZ, et al. Chemosensitivity and stratification by a five monoclonal antibody immunohistochemistry test in the NSABP B14 and B20 trials. Clin Cancer Res. 2008;14(20):6602–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bartlett JM, Thomas J, Ross DT, Seitz RS, Ring BZ, Beck RA, et al. Mammostrat as a tool to stratify breast cancer patients at risk of recurrence during endocrine therapy. Breast Cancer Res. 2010;12(4):R47.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bartlett JM, Bloom KJ, Piper T, Lawton TJ, van de Velde CJ, Ross DT, et al. Mammostrat as an immunohistochemical multigene assay for prediction of early relapse risk in the tamoxifen versus exemestane adjuvant multicenter trial pathology study. J Clin Oncol. 2012;30(36):4477–84.

    Article  CAS  PubMed  Google Scholar 

  50. van de Velde CJ, Rea D, Seynaeve C, Putter H, Hasenburg A, Vannetzel JM, et al. Adjuvant tamoxifen and exemestane in early breast cancer (TEAM): a randomised phase 3 trial. Lancet. 2011;377(9762):321–31.

    Article  PubMed  CAS  Google Scholar 

  51. Stephen J, Murray G, Cameron DA, Thomas J, Kunkler IH, Jack W, et al. Time dependence of biomarkers: non-proportional effects of immunohistochemical panels predicting relapse risk in early breast cancer. Br J Cancer. 2014;111(12):2242–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cuzick J, Berney DM, Fisher G, Mesher D, Moller H, Reid JE, et al. Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br J Cancer. 2012;106(6):1095–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dodson A, Zabaglo L, Yeo B, Miller K, Smith I, Dowsett M. Risk of recurrence estimates with IHC4+C are tolerant of variations in staining and scoring: an analytical validity study. J Clin Pathol. 2016;69(2):128–35.

    Article  CAS  PubMed  Google Scholar 

  54. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24(23):3726–34.

    Article  CAS  PubMed  Google Scholar 

  55. Cardoso F, Van’t Veer L, Rutgers E, Loi S, Mook S, Piccart-Gebhart MJ. Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol. 2008 Feb 10;26(5):729–35.

    Article  PubMed  Google Scholar 

  56. Gianni L, Zambetti M, Clark K, Baker J, Cronin M, Wu J, et al. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol. 2005;23(29):7265–77.

    Article  CAS  PubMed  Google Scholar 

  57. Chang JC, Makris A, Gutierrez MC, Hilsenbeck SG, Hackett JR, Jeong J, et al. Gene expression patterns in formalin-fixed, paraffin-embedded core biopsies predict docetaxel chemosensitivity in breast cancer patients. Breast Cancer Res Treat. 2008;108(2):233–40.

    Article  CAS  PubMed  Google Scholar 

  58. Yardley DA, Peacock NA, Hendricks C, Huh SY, Ketchum S, Chao C, et al. Correlation of Oncotype DX recurrence scores with pathologic response following neoadjuvant ixabepilone and cyclophosphamide in patients with HER2–negative breast cancer: a Sarah Cannon research institute phase II trial. Cancer Res. 2011;71:24 supplement abstract P5-13-09.

    Google Scholar 

  59. Pivot X, Mansi L, Chaigneau L, Dobi E, Thiery-Vuillemin A, Bazan F, et al. In the era of genomics: Should tumour size be reconsidered as a criterion for neoadjuvant chemotherapy? Paper presented at: The European Breast Cancer Conference (EBCC); 19–21 Mar 2014; Glasgow Scotland.

    Google Scholar 

  60. Gluck S, de Snoo F, Peeters J, Stork-Sloots L, Somlo G. Molecular subtyping of early-stage breast cancer identifies a group of patients who do not benefit from neoadjuvant chemotherapy. Breast Cancer Res Treat. 2013;139(3):759–67.

    Article  PubMed  CAS  Google Scholar 

  61. Bayraktar S, Royce M, Stork-Sloots L, de Snoo F, Gluck S. Molecular subtyping predicts pathologic tumor response in early-stage breast cancer treated with neoadjuvant docetaxel plus capecitabine with or without trastuzumab chemotherapy. Med Oncol. 2014;31(10):163.

    Article  PubMed  CAS  Google Scholar 

  62. Straver ME, Glas AM, Hannemann J, Wesseling J, van de Vijver MJ, Rutgers EJ, et al. The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat. 2010;119(3):551–8.

    Article  PubMed  Google Scholar 

  63. Whitworth P, Stork-Sloots L, de Snoo FA, Richards P, Rotkis M, Beatty J, et al. Chemosensitivity predicted by BluePrint 80-gene functional subtype and MammaPrint in the prospective Neoadjuvant breast registry symphony trial (NBRST). Ann Surg Oncol. 2014;21(10):3261–7.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Prat A, Galvan P, Jimenez B, Buckingham W, Jeiranian HA, Schaper C, et al. Prediction of response to neoadjuvant chemotherapy using core needle biopsy samples with the Prosigna assay. Clin Cancer Res. 2016;22(3):560–6.

    Article  CAS  PubMed  Google Scholar 

  65. Mathieu MC, Mazouni C, Kesty NC, Zhang Y, Scott V, Passeron J, et al. Breast cancer index predicts pathological complete response and eligibility for breast conserving surgery in breast cancer patients treated with neoadjuvant chemotherapy. Ann Oncol. 2012;23(8):2046–52.

    Article  CAS  PubMed  Google Scholar 

  66. Elsamany S, Elmorsy S, Alzahrani A, Rasmy A, Abozeed WN, Mohammed AA, et al. Predictive value of IHC4 score for pathological response to neoadjuvant chemotherapy in hormone receptor-positive breast cancer. Asian Pac J Cancer Prev. 2015;16(17):7975–9.

    Article  PubMed  Google Scholar 

  67. Bertucci F, Finetti P, Viens P, Birnbaum D. EndoPredict predicts for the response to neoadjuvant chemotherapy in ER-positive, HER2-negative breast cancer. Cancer Lett. 2014;355(1):70–5.

    Article  CAS  PubMed  Google Scholar 

  68. Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, et al. Tailoring therapies-improving the management of early breast cancer: St Gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann Oncol. 2015;26(8):1533–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Senkus E, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rutgers E, et al. Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Supplement 5):v8–30.

    Article  PubMed  Google Scholar 

  70. Harris LN, Ismaila N, McShane LM, Andre F, Collyar DE, Gonzalez-Angulo AM, et al. Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2016;34(10):1134–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. NCCN. NCCN clinical practice guidelines in oncology. Breast Cancer. Version 1.2016. [Internet]. 2016 [cited 1 Apr 2016]. Available from: http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf.

  72. Poulet B, Jamshidian F, Butler S, Cherbavaz DB, Svedman C, Levy E, et al. Risk classification of early stage breast cancer as assessed by MammaPrint and Oncotype DX genomic assays. Presented at: San Antonio Breast Cancer Symposium (SABCS); 4–8 Dec 2012; San Antonio.

    Google Scholar 

  73. Denduluri N, Rugo HS, Davis SE, Favret A, Hong R, Au A, et al. Concordance between the 21-gene recurrence score (RS) and the 70-gene profile (MP) in breast cancer (BC) patients (pts). J Clin Oncol. 2011;29(Suppl 27):abstract 13.

    Article  Google Scholar 

  74. Alvarado MD, Prasad C, Rothney M, Cherbavaz DB, Sing AP, Baehner FL, et al. A prospective comparison of the 21-gene recurrence score and the PAM50-based Prosigna in estrogen receptor-positive early-stage breast cancer. Adv Ther. 2015;32(12):1237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Varga Z, Sinn P, Fritzsche F, von Hochstetter A, Noske A, Schraml P, et al. Comparison of EndoPredict and Oncotype DX test results in hormone receptor positive invasive breast cancer. PLoS One. 2013;8(3):e58483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Acs G, Kiluk J, Loftus L, Laronga C. Comparison of Oncotype DX and Mammostrat risk estimations and correlations with histologic tumor features in low-grade, estrogen receptor-positive invasive breast carcinomas. Mod Pathol. 2013;26(11):1451–60.

    Article  CAS  PubMed  Google Scholar 

  77. Blohmer JU, Rezai M, Kummel S, Kuhn T, Warm M, Friedrichs K, et al. Using the 21-gene assay to guide adjuvant chemotherapy decision-making in early-stage breast cancer: a cost-effectiveness evaluation in the German setting. J Med Econ. 2013;16(1):30–40.

    Article  CAS  PubMed  Google Scholar 

  78. Klang SH, Hammerman A, Liebermann N, Efrat N, Doberne J, Hornberger J. Economic implications of 21-gene breast cancer risk assay from the perspective of an Israeli-managed health-care organization. Value Health. 2010;13(4):381–7.

    Article  PubMed  Google Scholar 

  79. Markopoulos C, Xepapadakis G, Venizelos V, Tsiftsoglou A, Misitzis J, Panoussis D, et al. Clinical experience of using Oncotype DX as an additional treatment decision tool in early breast cancer - a retrospective analysis from 5 Greek institutions. Eur J Surg Oncol. 2012;38(5):413–9.

    Article  CAS  PubMed  Google Scholar 

  80. Hornberger J, Alvarado MD, Rebecca C, Gutierrez HR, TM Y, Gradishar WJ. Clinical validity/utility, change in practice patterns, and economic implications of risk stratifiers to predict outcomes for early-stage breast cancer: a systematic review. J Natl Cancer Inst. 2012 Jul 18;104(14):1068–79.

    Article  PubMed  Google Scholar 

  81. Augustovski F, Soto N, Caporale J, Gonzalez L, Gibbons L, Ciapponi A. Decision-making impact on adjuvant chemotherapy allocation in early node-negative breast cancer with a 21-gene assay: systematic review and meta-analysis. Breast Cancer Res Treat. 2015;152(3):611–25.

    Article  CAS  PubMed  Google Scholar 

  82. Exner R, Bago-Horvath Z, Bartsch R, Mittlboeck M, Retel VP, Fitzal F, et al. The multigene signature MammaPrint impacts on multidisciplinary team decisions in ER(+), HER2(−) early breast cancer. Br J Cancer. 2014;111(5):837–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pohl H, Kotze MJ, Grant KA, van der Merwe L, Pienaar FM, Apffelstaedt JP, et al. Impact of MammaPrint on clinical decision-making in south African patients with early-stage breast cancer. Breast J. 2016;22(4):442–6. [Epub ahead of print]

    Article  CAS  PubMed  Google Scholar 

  84. Martin M, Gonzalez-Rivera M, Morales S. De la Haba-Rodriguez J, Gonzalez-Cortijo L, Manso L, et al. prospective study of the impact of the Prosigna assay on adjuvant clinical decision-making in unselected patients with estrogen receptor positive, human epidermal growth factor receptor negative, node negative early-stage breast cancer. Curr Med Res Opin. 2015;31(6):1129–37.

    Article  CAS  PubMed  Google Scholar 

  85. Wuerstlein R, Sotlar K, Gluz O, Otremba B, von Schumann R, Witzel I, et al. The West German study group breast cancer intrinsic subtype study: a prospective multicenter decision impact study utilizing the Prosigna assay for adjuvant treatment decision-making in estrogen-receptor-positive, HER2-negative early-stage breast cancer. Curr Med Res Opin. 2016;32(7):1217–24. [Epub ahead of print].

    Article  CAS  PubMed  Google Scholar 

  86. Muller BM, Keil E, Lehmann A, Winzer KJ, Richter-Ehrenstein C, Prinzler J, et al. The EndoPredict gene-expression assay in clinical practice - performance and impact on clinical decisions. PLoS One. 2013;8(6):e68252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Yeo B, Zabaglo L, Hills M, Dodson A, Smith I, Dowsett M. Clinical utility of the IHC4+C score in oestrogen receptor-positive early breast cancer: a prospective decision impact study. Br J Cancer. 2015;113(3):390–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Holt S, Bertelli G, Humphreys I, Valentine W, Durrani S, Pudney D, et al. A decision impact, decision conflict and economic assessment of routine Oncotype DX testing of 146 women with node-negative or pNImi, ER-positive breast cancer in the UK. Br J Cancer. 2013;108(11):2250–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tsoi DT, Inoue M, Kelly CM, Verma S, Pritchard KI. Cost-effectiveness analysis of recurrence score-guided treatment using a 21-gene assay in early breast cancer. Oncologist. 2010;15(5):457–65.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lamond NW, Skedgel C, Rayson D, Lethbridge L, Younis T. Cost-utility of the 21-gene recurrence score assay in node-negative and node-positive breast cancer. Breast Cancer Res Treat. 2012;133(3):1115–23.

    Article  PubMed  Google Scholar 

  91. Hornberger J, Cosler LE, Lyman GH. Economic analysis of targeting chemotherapy using a 21-gene RT-PCR assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer. Am J Manag Care. 2005;11(5):313–24.

    PubMed  Google Scholar 

  92. Vataire AL, Laas E, Aballea S, Gligorov J, Rouzier R, Chereau E. Cost-effectiveness of a chemotherapy predictive test. Bull Cancer. 2012;99(10):907–14.

    PubMed  Google Scholar 

  93. Chen E, Tong KB, Malin JL. Cost-effectiveness of 70-gene MammaPrint signature in node-negative breast cancer. Am J Manag Care. 2010;16(12):e333–42.

    PubMed  Google Scholar 

  94. Retel VP, Joore MA, Drukker CA, Bueno-de-Mesquita JM, Knauer M, van Tinteren H, et al. Prospective cost-effectiveness analysis of genomic profiling in breast cancer. Eur J Cancer. 2013;49(18):3773–9.

    Article  CAS  PubMed  Google Scholar 

  95. Retel VP, Joore MA, Knauer M, Linn SC, Hauptmann M, Harten WH. Cost-effectiveness of the 70-gene signature versus St. Gallen guidelines and adjuvant Online for early breast cancer. Eur J Cancer. 2010;46(8):1382–91.

    Article  PubMed  Google Scholar 

  96. Kondo M, Hoshi SL, Ishiguro H, Toi M. Economic evaluation of the 70-gene prognosis-signature (MammaPrint(R)) in hormone receptor-positive, lymph node-negative, human epidermal growth factor receptor type 2-negative early stage breast cancer in Japan. Breast Cancer Res Treat. 2012 Jun;133(2):759–68.

    Article  PubMed  Google Scholar 

  97. Blank PR, Filipits M, Dubsky P, Gutzwiller F. Lux MP, Brase JC, et al. cost-effectiveness analysis of prognostic gene expression signature-based stratification of early breast cancer patients. PharmacoEconomics. 2015;33(2):179–90.

    Article  PubMed  Google Scholar 

  98. Gustavsen G, Schroeder B, Kennedy P, Pothier KC, Erlander MG, Schnabel CA, et al. Health economic analysis of breast cancer index in patients with ER+, LN- breast cancer. Am J Manag Care. 2014;20(8):e302–10.

    PubMed  Google Scholar 

  99. Mislick K, Schonfeld W, Bodnar C, Tong KB. Cost-effectiveness analysis of Mammostrat(R) compared with Oncotype DX(R) to inform the treatment of breast cancer. Clinicoecon Outcomes Res. 2014;6:37–47.

    PubMed  PubMed Central  Google Scholar 

  100. Ward S, Scope A, Rafia R, Pandor A, Harnan S, Evans P, et al. Gene expression profiling and expanded immunohistochemistry tests to guide the use of adjuvant chemotherapy in breast cancer management: a systematic review and cost-effectiveness analysis. Health Technol Assess. 2013;17(44):1–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Allegra CJ, Aberle DR, Ganschow P, Hahn SM, Lee CN, Millon-Underwood S, et al. National Institutes of Health state-of-the-science Conference statement: diagnosis and management of ductal carcinoma in situ September 22–24, 2009. J Natl Cancer Inst. 2010;102(3):161–9.

    Article  PubMed  Google Scholar 

  102. Pinder SE. Ductal carcinoma in situ (DCIS): pathological features, differential diagnosis, prognostic factors and specimen evaluation. Mod Pathol. 2010;23(Supplement 2):S8–13.

    Article  PubMed  Google Scholar 

  103. Masson S, Bahl A. The management of ductal carcinoma in situ: current controversies and future directions. Clin Oncol. 2013;25(5):275–82.

    Article  CAS  Google Scholar 

  104. Silverstein MJ, Lagios MD, Craig PH, Waisman JR, Lewinsky BS, Colburn WJ, et al. A prognostic index for ductal carcinoma in situ of the breast. Cancer. 1996;77(11):2267–74.

    Article  CAS  PubMed  Google Scholar 

  105. Silverstein MJ. The University of Southern California/van Nuys prognostic index for ductal carcinoma in situ of the breast. Am J Surg. 2003;186(4):337–43.

    Article  PubMed  Google Scholar 

  106. Sagara Y, Freedman RA, Vaz-Luis I, Mallory MA, Wong SM, Aydogan F, et al. Patient prognostic score and associations with survival improvement offered by radiotherapy after breast-conserving surgery for ductal carcinoma in situ: a population-based longitudinal cohort study. J Clin Oncol. 2016;34(11):1190–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Altintas S, Toussaint J, Durbecq V, Lambein K, Huizing MT, Larsimont D, et al. Fine tuning of the van Nuys prognostic index (VNPI) 2003 by integrating the genomic grade index (GGI): new tools for ductal carcinoma in situ (DCIS). Breast J. 2011;17(4):343–51.

    Article  PubMed  Google Scholar 

  108. Solin LJ, Gray R, Baehner FL, Butler SM, Hughes LL, Yoshizawa C, et al. A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J Natl Cancer Inst. 2013;105(10):701–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hughes LL, Wang M, Page DL, Gray R, Solin LJ, Davidson NE, et al. Local excision alone without irradiation for ductal carcinoma in situ of the breast: a trial of the eastern cooperative oncology group. J Clin Oncol. 2009;27(32):5319–24.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Rakovitch E, Nofech-Mozes S, Hanna W, Baehner FL, Saskin R, Butler SM, et al. A population-based validation study of the DCIS score predicting recurrence risk in individuals treated by breast-conserving surgery alone. Breast Cancer Res Treat. 2015;152(2):389–98.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Alvarado M, Carter DL, Guenther JM, Hagans J, Lei RY, Leonard CE, et al. The impact of genomic testing on the recommendation for radiation therapy in patients with ductal carcinoma in situ: a prospective clinical utility assessment of the 12-gene DCIS score result. J Surg Oncol. 2015;111(8):935–40.

    Article  PubMed  Google Scholar 

  112. Manders JB, Kuerer HM, Smith BD, McCluskey C, Farrar WB, Frazier TG, et al. The 12-gene DCIS score assay: Impact on radiation treatment (XRT) recommendations and clinical utility. Paper presented at: San Antonio Breast Cancer Conference (SABCS); 8–12 Dec 2015; San Antonio.

    Google Scholar 

  113. Young R, Gergelis K, Kalnicki S, Fox JL. The DCIS Score - potential for healthcare savings? Paper presented at: San Antonio Breast Cancer Conference (SABCS); 9–13 Dec 2014; San Antonio.

    Google Scholar 

  114. Alvarado M, Harrison B, Howe R, Rounds K, Solin L, Ozanne E. Cost-effectiveness of gene expression profiling for DCIS. Paper presented at: San Antonio Breast Cancer Conference (SABCS); 4–8Dec 2012; San Antonio.

    Google Scholar 

  115. Jiang YZ, Liu YR, XE X, Jin X, Hu X, KD Y, et al. Transcriptome analysis of triple-negative breast cancer reveals an integrated mRNA-lncRNA signature with predictive and prognostic value. Cancer Res. 2016;76(8):2105–14. [Epub ahead of print]

    Article  CAS  PubMed  Google Scholar 

  116. Liu YR, Jiang YZ, XE X, Hu X, KD Y, Shao ZM. Comprehensive transcriptome profiling reveals multigene signatures in triple-negative breast cancer. Clin Cancer Res. 2016;22(7):1653–62.

    Article  CAS  PubMed  Google Scholar 

  117. Garcia-Martinez E, Gil GL, Benito AC, Gonzalez-Billalabeitia E, Conesa MA, Garcia Garcia T, et al. Tumor-infiltrating immune cell profiles and their change after neoadjuvant chemotherapy predict response and prognosis of breast cancer. Breast Cancer Res. 2014;16(6):488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Migliaccio I, Piazza S, Verardo R, Guarducci C, Bonechi M, Ciani Y, et al. Identification of gene expression signatures of palbociclib (PD) response in breast cancer (BC). Ann Oncol. 2015;26(Supplement 3):iii15–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Markopoulos MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Markopoulos, C. (2018). Molecular Profiling of Breast Cancer and DCIS. In: Wyld, L., Markopoulos, C., Leidenius, M., Senkus-Konefka, E. (eds) Breast Cancer Management for Surgeons. Springer, Cham. https://doi.org/10.1007/978-3-319-56673-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56673-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56671-9

  • Online ISBN: 978-3-319-56673-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics