Skip to main content

Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities

  • Chapter
  • First Online:
Transport Processes at Fluidic Interfaces

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

Diffuse interface models have become an important analytical and numerical method to model two-phase flows. In this contribution we review the subject and discuss in detail a thermodynamically consistent model with a divergence free velocity field for two-phase flows with different densities. The model is derived using basic thermodynamical principles, its sharp interface limits are stated, existence results are given, different numerical approaches are discussed and computations showing features of the model are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abels, H.: Diffuse interface models for two-phase flows of viscous incompressible fluids. Habilitation thesis, Leipzig (2007)

    MATH  Google Scholar 

  2. Abels, H.: Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities. Commun. Math. Phys. 289, 45–73 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194, 463–506 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abels, H., Breit, D.: Weak solutions for a non-Newtonian diffuse interface model with different densities. Nonlinearity 29, 3426–3453 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abels, H., Lengeler, D.: On sharp interface limits for diffuse interface models for two-phase flows. Interfaces Free Bound. 16(3), 395–418 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abels, H., Wilke, M.: Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. 67, 3176–3193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(3), 1150013 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Abels, H., Depner, D., Garcke, H.: Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities. J. Math. Fluid Mech. 15(3), 453–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Abels, H., Depner, D., Garcke, H.: On an incompressible Navier-Stokes/Cahn-Hilliard system with degenerate mobility. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(6), 1175–1190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Abels, H., Garcke, H., Lam, Kei Fong, Weber, J.: Two-phase flow with surfactants: diffuse interface models and their analysis. In: Bothe, D., Reusken, A. (eds.) Transport Processes at Fluidic Interfaces. Springer, Cham (2017)

    Google Scholar 

  11. Abels, H., Liu, Y., Schöttl, A.: Sharp interface limits for diffuse interface models for two-phase flows of viscous incompressible fluids. In: Bothe, D., Reusken, A. (eds.) Transport Processes at Fluidic Interfaces. Springer, Cham (2017)

    Google Scholar 

  12. Aki, G., Dreyer, W., Giesselmann, J., Kraus, C.: A quasi-incompressible diffuse interface model with phase transition. Math. Models Methods Appl. Sci. 24, 827–861 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Alt, H.W.: The entropy principle for interfaces. Fluids and solids. Adv. Math. Sci. Appl. 2, 585–663 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Anderson, D.-M., McFadden, G.B., Wheeler,A.A.: Diffuse interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998)

    Article  MathSciNet  Google Scholar 

  15. Antanovskii, L.K.: A phase field model of capillarity. Phys. Fluids 7(4), 747–753 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Armero, F., Simo, J.C.: Formulation of a new class of fractional-step methods for the incompressible mhd equations that retains the long-term dissipativity of the continuum dynamical system. Fields Inst. Commun. 10, 1–24 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Boyer, F.: Nonhomogeneous Cahn-Hilliard fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(2), 225–259 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Boyer, F.: A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids 31, 41–68 (2002)

    Article  MATH  Google Scholar 

  19. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002)

    Book  MATH  Google Scholar 

  20. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Google Scholar 

  21. Campillo-Funollet, E., Grün, G., Klingbeil, F.: On modeling and simulation of electrokinetic phenomena in two-phase flow with general mass densities. SIAM J. Appl. Math. 72(6), 825–854 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ding, H., Spelt, P.D.M., Shu, C.: Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comp. Phys. 22, 2078–2095 (2007)

    Article  MATH  Google Scholar 

  23. Elliott, C.M., Garcke, H.: Existence results for diffusive surface motion laws. Adv. Math. Sci. Appl. 7(1), 467–490 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Feng, X.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Garcke, H., Hinze, M., Kahle, C.: A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow. Appl. Numer. Math. 99, 151–171 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grün, G.: On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. SIAM J. Numer. Anal. 51(6), 3036–3061 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grün, G., Klingbeil, F.: Two-phase flow with mass density contrast: stable schemes for a thermodynamic consistent and frame-indifferent diffuse-interface model. J. Comput. Phys. 257, Part A, 708–725 (2014)

    Google Scholar 

  28. Grün, G., Metzger, S.: On micro-macro models for two-phase flow of dilute polymeric solutions: modeling - analysis - simulation. In: Bothe, D., Reusken, A. (eds.) Transport Processes at Fluidic Interfaces. Springer, Cham (2017)

    Google Scholar 

  29. Grün, G., Guillén-González, F., Metzger, S.: On fully decoupled, convergent schemes for diffuse interface models for two-phase flow with general mass densities. Commun. Comput. Phys. 19(5), 1473–1502 (2016)

    Article  MathSciNet  Google Scholar 

  30. Guillén-González, F., Tierra, G.: Splitting schemes for a Navier–Stokes–Cahn–Hilliard model for two fluids with different densities. J. Comput. Math. 32(6), 643–664 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Gurtin, M.E., Polignone, D., Viñals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6(6), 815–831 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hirth, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp. Phys. 39, 201–225 (1981)

    Article  MATH  Google Scholar 

  33. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)

    Article  Google Scholar 

  34. Jacqmin, D.: Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys. 155, 96–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn-Hilliard-Navier-Stokes system. Interfaces Free Bound. 10, 15–43 (2008)

    Article  MathSciNet  Google Scholar 

  36. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys. 193, 511–543 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kotschote, M.: Strong solutions for a compressible fluid model of Korteweg type. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(4), 679–696 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179(3–4), 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. n454, 2617–2654 (1998)

    Google Scholar 

  40. Minjeaud, S.: An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier-Stokes model. Numer. Methods Partial Differ. Equ. 29(2), 584–618 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sethian, J.A.: Level Set Methods. Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monograph on Applied and Computational Mathematics. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  42. Weber, J.: Analysis of diffuse interface models for two-phase flows with and without surfactants. Dissertation thesis, University of Regensburg (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported within the DFG Priority Program 1506 “Transport Processes at Fluidic Interfaces”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Garcke .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Discretization in Space and Time

We assume \(\mathscr{T}_{h}\) to be a quasiuniform triangulation of Ω with simplicial elements in the sense of [19].

Concerning discretization with respect to time, we assume that

(T):

the time interval I: = [0, T) is subdivided in intervals I k = [t k , t k+1) with t k+1 = t k + τ k for time increments τ k > 0 and k = 0, ⋯ , N − 1. For simplicity, we take τ k τ for k = 0, ⋯ , N − 1.

We write v k for v(⋅ , ), \(k \in \mathbb{N}\), and we denote step functions in time mapping I = [0, T] onto one of the discrete function spaces X h , …by an index τh.

For the approximation of both the phase-field φ and the chemical potential μ, we introduce the space U h of continuous, piecewise linear finite element functions on \(\mathscr{T}_{h}\). The expression \(\mathscr{I}_{h}\) stands for the nodal interpolation operator from C 0(Ω) to U h defined by \(\mathscr{I}_{h}u:=\sum _{ j=1}^{\dim U_{h}}u(x_{ j})\theta _{j}\), where the functions θ j form a dual basis to the nodes x j , i.e. θ i (x j ) = δ ij , i, j = 1, , dimU h .

Let us furthermore introduce the well-known lumped masses scalar product corresponding to the integration formula

$$\displaystyle{ \left (\varTheta,\varPsi \right )_{h}:=\int _{\varOmega }\mathscr{I}_{h}(\varTheta \varPsi ). }$$

For the discretization of the velocity field v and the pressure p, we use function spaces W h X h W 0 1,2(Ω) and S h L 0 2(Ω): = {vL 2(Ω) | Ω v = 0} which form an admissible pair of discretization spaces in hydrodynamics. This means that besides the conditions

(S1):

\(\mathbf{W}_{h}:=\{ \mathbf{v}_{h} \in \mathbf{X}_{h}\vert \int _{\varOmega }q_{h}\mathop{ \mathrm{div}}\nolimits \mathbf{v}_{h} = 0\quad \forall q_{h} \in S_{h}\},\)

(S2):

The Babuška-Brezzi condition is satisfied, i.e. a positive constant β exists such that

$$\displaystyle{\sup _{\mathbf{v}_{h}\in \mathbf{X}_{h}}\frac{(q_{h},\mathop{\mathrm{div}}\nolimits \mathbf{v}_{h})} {\left \|\mathbf{v}_{h}\right \|_{\mathbf{W}_{0}^{1,2}(\varOmega )}} \geq \beta \left \|q_{h}\right \|_{L^{2}(\varOmega )}}$$

for all q h S h

a number of additional conditions hold true which are specified in [26] and [29].

Taylor-Hood elements (i.e. P 2 P 1-elements) and P 2 P 0-elements are examples in agreement with these conditions. In both cases, X h is given as

$$\displaystyle{ \mathbf{X}_{h}:= \left \{\mathbf{w} \in (\mathbf{C}_{0}^{0}(\bar{\varOmega })): \left (\mathbf{w}\right )_{ j}\vert _{K} \in P_{2}(K),K \in \mathscr{T}_{h},j = 1,\ldots,d\right \},\quad d = 2,3. }$$

For Taylor-Hood elements, S h is defined to be the subset of functions in U h with vanishing mean value. In the case of P 2 P 0-elements, S h is given by the set of elementwise constant functions with mean value zero. Let us specify the assumptions on initial data and the double-well potential.

Definition 1

Let \(\psi \in C^{1}(\mathbb{R}; \mathbb{R}_{0}^{+})\) be given such that ψ′ is piecewise C 1 with at most quadratic growth of the derivatives for \(\left \vert x\right \vert \rightarrow \infty\). We call \(\psi _{\tau h}^{{\prime}} \in C^{0}(\mathbb{R}^{2}; \mathbb{R})\) an admissible discretization of ψ′ if the following is satisfied.

(H1):

There is a positive constant C, such that

$$\displaystyle{ \left \vert \psi _{\tau h}^{{\prime}}\left (a,b\right )\right \vert \leq C\left (1 + \left \vert a\right \vert ^{3} + \left \vert b\right \vert ^{3}\right ). }$$
(H2):

\(\psi _{\tau h}^{{\prime}}\left (a,b\right )\left (a - b\right ) \geq F\left (a\right ) - F\left (b\right )\) for all \(a,b \in \mathbb{R}\).

(H3):

\(\psi _{\tau h}^{{\prime}}\left (a,b\right ) = F'\left (a\right )\) for all \(a \in \mathbb{R}\).

(H4):

There is a positive constant C such that

$$\displaystyle{\left \vert \psi _{\tau h}^{{\prime}}(a,b) -\psi _{\tau h}^{{\prime}}(b,c)\right \vert \leq C\left (a^{2} + b^{2} + c^{2}\right )\left (\vert a - b\vert + \vert b - c\vert \right )}$$

for all \(a,b,c \in \mathbb{R}.\)

Moreover, we make the following assumptions on initial data and the regularized mass density \(\rho \left (\varphi \right )\).

(H5):

Let initial data Φ 0H 2(Ω; [−1, 1]) and \(\mathbf{V}_{0} \in \mathbf{W}_{0,\mathop{\mathrm{div}}\nolimits }^{1,2}(\varOmega )\) be given such that we have for discrete initial data \(\varphi _{h}^{0}:=\mathscr{ I}_{h}\varPhi _{0}\) and v h 0—given by the orthogonal projection of V 0 onto \(\mathscr{W}_{h}\)—uniformly in h > 0 that

$$\displaystyle{\int _{\varOmega }\left \vert \varDelta _{h}\varphi _{h}^{0}\right \vert ^{2} \leq C\left \|\varPhi _{ 0}\right \|_{H^{2}(\varOmega )}^{2}}$$

and that

$$\displaystyle{\int _{\varOmega }\rho (\varphi _{h}^{0})\left \vert \mathbf{v}_{ h}^{0}\right \vert ^{2} + \frac{1} {2}\int _{\varOmega }\left \vert \nabla \varphi _{h}^{0}\right \vert ^{2} +\int _{\varOmega }\mathscr{I}_{ h}F(\varphi _{h}^{0}) \leq C\mathscr{E}(\mathbf{V}_{ 0},\varPhi _{0}).}$$

Here, the discrete Laplacian Δ h wU h H 1(Ω) is defined by

$$\displaystyle{ \left (\varDelta _{h}w,\varTheta \right )_{h} = -\int _{\varOmega }\langle \nabla w,\nabla \varTheta \rangle \quad \forall \varTheta \in U_{h}. }$$
(8.45)
(H6):

Given mass densities \(0 <\tilde{\rho } _{-}\leq \tilde{\rho }_{+} \in \mathbb{R}\) of the fluids involved and an arbitrary, but fixed regularization parameter \(\bar{\varphi }\in \left ( \frac{\tilde{\rho }_{-}} {\tilde{\rho }_{+}-\tilde{\rho }_{-}}, \frac{2\tilde{\rho }_{-}} {\tilde{\rho }_{+}-\tilde{\rho }_{-}}\right )\), we define the regularized mass density of the two-phase fluid by a smooth, increasing, strictly positive function ρ of the phase-field φ which satisfies

$$\displaystyle\begin{array}{rcl} \rho (\varphi )\vert _{(-1-\bar{\varphi },1+\bar{\varphi })} = \frac{\tilde{\rho }_{+} -\tilde{\rho }_{+}} {2} \varphi + \frac{\tilde{\rho }_{-} +\tilde{\rho } _{+}} {2},& & {}\end{array}$$
(8.46)
$$\displaystyle\begin{array}{rcl} \rho (\varphi )\vert _{(-\infty,-1- \frac{2\tilde{\rho }_{-}} {\tilde{\rho }_{+}-\tilde{\rho }_{-}})} \equiv const.,& & {}\end{array}$$
(8.47)
$$\displaystyle\begin{array}{rcl} \rho (\varphi )\vert _{(1+ \frac{2\tilde{\rho }_{-}} {\tilde{\rho }_{+}-\tilde{\rho }_{-}},\infty )} \equiv const..& & {}\end{array}$$
(8.48)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Abels, H., Garcke, H., Grün, G., Metzger, S. (2017). Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities. In: Bothe, D., Reusken, A. (eds) Transport Processes at Fluidic Interfaces. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-56602-3_8

Download citation

Publish with us

Policies and ethics